Metal Complexes with Redox-Active Ligands in the Indirect Electrosynthesis of Organic Sulfur Compounds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
E. V. Shinkar’, I. V. Smolyaninov, N. T. Berberova
{"title":"Metal Complexes with Redox-Active Ligands in the Indirect Electrosynthesis of Organic Sulfur Compounds","authors":"E. V. Shinkar’,&nbsp;I. V. Smolyaninov,&nbsp;N. T. Berberova","doi":"10.1134/S107032842360122X","DOIUrl":null,"url":null,"abstract":"<p>A possibility of using metal complexes with redox-active ligands in organic electrosynthesis is demonstrated on the basis of literature data analysis. Unlike homogeneous catalysis, many examples are known for the application of complexes of this type in electrocatalytic processes characterized by a higher selectivity and milder conditions. Interest in metal complexes with redox-active ligands is due to their use in the heterogeneous electrocatalysis as well. The main attention is given to advantages of the indirect electrosynthesis of organic compounds, in particular, sulfur derivatives, in the presence of mediators or electrocatalysts based on metal complexes with redox-active ligands. Active forms of metal complexes are generated at the electrodes and can initiate the further transformations of inert substrates. A significant decrease in power expenses compared to the direct redox activation of reagents is the main advantage of indirect electrosynthesis. The cyclic processes favoring a permanent regeneration of metal complexes lead to an increase in the yield of target compounds.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S107032842360122X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A possibility of using metal complexes with redox-active ligands in organic electrosynthesis is demonstrated on the basis of literature data analysis. Unlike homogeneous catalysis, many examples are known for the application of complexes of this type in electrocatalytic processes characterized by a higher selectivity and milder conditions. Interest in metal complexes with redox-active ligands is due to their use in the heterogeneous electrocatalysis as well. The main attention is given to advantages of the indirect electrosynthesis of organic compounds, in particular, sulfur derivatives, in the presence of mediators or electrocatalysts based on metal complexes with redox-active ligands. Active forms of metal complexes are generated at the electrodes and can initiate the further transformations of inert substrates. A significant decrease in power expenses compared to the direct redox activation of reagents is the main advantage of indirect electrosynthesis. The cyclic processes favoring a permanent regeneration of metal complexes lead to an increase in the yield of target compounds.

Abstract Image

Abstract Image

氧化还原活性配体金属配合物在有机硫化合物间接电合成中的应用
摘要 根据文献数据分析,证明了在有机电合成中使用具有氧化还原活性配体的金属络合物的可能性。与均相催化不同,这类配合物在电催化过程中的应用有很多实例,其特点是选择性更高,条件更温和。人们之所以对具有氧化还原活性配体的金属配合物感兴趣,是因为它们也可用于异相电催化。主要关注的是有机化合物(尤其是硫衍生物)在具有氧化还原活性配体的金属络合物为基础的介质或电催化剂存在下进行间接电合成的优势。金属络合物的活性形式在电极上生成,并可启动惰性基质的进一步转化。与试剂的直接氧化还原活化法相比,间接电合成法的主要优点是大大降低了电能消耗。有利于金属络合物永久再生的循环过程可提高目标化合物的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信