Self-Adapting Machine Learning-based Systems via a Probabilistic Model Checking Framework

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Maria Casimiro, Diogo Soares, David Garlan, Luís Rodrigues, Paolo Romano
{"title":"Self-Adapting Machine Learning-based Systems via a Probabilistic Model Checking Framework","authors":"Maria Casimiro, Diogo Soares, David Garlan, Luís Rodrigues, Paolo Romano","doi":"10.1145/3648682","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the problem of optimizing system utility of Machine-Learning (ML) based systems in the presence of ML mispredictions. This is achieved via the use of self-adaptive systems and through the execution of adaptation tactics, such as <i>model retraining</i>, which operate at the level of individual ML components. </p><p>To address this problem, we propose a probabilistic modeling framework that reasons about the cost/benefit trade-offs associated with adapting ML components. The key idea of the proposed approach is to decouple the problems of estimating <b>(i)</b> the expected performance improvement after adaptation and <b>(ii)</b> the impact of ML adaptation on overall system utility. </p><p>We apply the proposed framework to engineer a self-adaptive ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection data-set. We initially consider a scenario in which information on model’s quality is immediately available. Next we relax this assumption by integrating (and extending) state-of-the-art techniques for estimating model’s quality in the proposed framework. We show that by predicting the system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic or reactive retraining.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"18 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648682","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the problem of optimizing system utility of Machine-Learning (ML) based systems in the presence of ML mispredictions. This is achieved via the use of self-adaptive systems and through the execution of adaptation tactics, such as model retraining, which operate at the level of individual ML components.

To address this problem, we propose a probabilistic modeling framework that reasons about the cost/benefit trade-offs associated with adapting ML components. The key idea of the proposed approach is to decouple the problems of estimating (i) the expected performance improvement after adaptation and (ii) the impact of ML adaptation on overall system utility.

We apply the proposed framework to engineer a self-adaptive ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection data-set. We initially consider a scenario in which information on model’s quality is immediately available. Next we relax this assumption by integrating (and extending) state-of-the-art techniques for estimating model’s quality in the proposed framework. We show that by predicting the system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic or reactive retraining.

通过概率模型检查框架实现基于机器学习的自适应系统
本文重点探讨了在机器学习(ML)预测失误的情况下,如何优化基于机器学习(ML)的系统效用的问题。这是通过使用自适应系统和执行适应策略(如模型再训练)来实现的,这些策略在单个 ML 组件的层面上运行。为解决这一问题,我们提出了一个概率建模框架,该框架可对与适应 ML 组件相关的成本/收益权衡进行推理。所提方法的关键思路是将以下问题分离开来:(i) 适应后的预期性能改进;(ii) ML 适应对整个系统效用的影响。我们将提出的框架应用于设计基于 ML 的自适应欺诈检测系统,并使用公开的真实欺诈检测数据集对该系统进行评估。我们首先考虑的是模型质量信息立即可用的情况。接下来,我们放宽了这一假设,在提议的框架中整合(并扩展)了最先进的模型质量估算技术。我们的研究表明,通过预测重新训练 ML 组件所产生的系统效用,概率模型检查器可以生成明显更接近最优的适应策略,与周期性或反应性重新训练等基线策略相比,效果更佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Autonomous and Adaptive Systems
ACM Transactions on Autonomous and Adaptive Systems 工程技术-计算机:理论方法
CiteScore
4.80
自引率
7.40%
发文量
9
审稿时长
>12 weeks
期刊介绍: TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信