Runtao Zhu, Jiao Zhang, Lin Wang, Yunfeng Zhang, Yang Zhao, Ying Han, Jing Sun, Xi Zhang, Ying Dou, Huaxiong Yao, Wei Yan, Xiaozhou Luo, Junbiao Dai, Zhuojun Dai
{"title":"Engineering functional materials through bacteria-assisted living grafting.","authors":"Runtao Zhu, Jiao Zhang, Lin Wang, Yunfeng Zhang, Yang Zhao, Ying Han, Jing Sun, Xi Zhang, Ying Dou, Huaxiong Yao, Wei Yan, Xiaozhou Luo, Junbiao Dai, Zhuojun Dai","doi":"10.1016/j.cels.2024.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Functionalizing materials with biomacromolecules such as enzymes has broad applications in biotechnology and biomedicine. Here, we introduce a grafting method mediated by living cells to functionalize materials. We use polymeric scaffolds to trap engineered bacteria and micron-sized particles with chemical groups serving as active sites for grafting. The bacteria synthesize the desired protein for grafting and autonomously lyse to release it. The released functional moieties are locally grafted onto the active sites, generating the materials engineered by living grafting (MELGs). MELGs are resilient to perturbations because of both the bonding and the regeneration of functional domains synthesized by living cells. The programmability of the bacteria enables us to fabricate MELGs that can respond to external input, decompose a pollutant, reconstitute synthetic pathways for natural product synthesis, and purify mismatched DNA. Our work establishes a bacteria-assisted grafting strategy to functionalize materials with a broad range of biological activities in an integrated, flexible, and modular manner. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"264-274.e9"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Functionalizing materials with biomacromolecules such as enzymes has broad applications in biotechnology and biomedicine. Here, we introduce a grafting method mediated by living cells to functionalize materials. We use polymeric scaffolds to trap engineered bacteria and micron-sized particles with chemical groups serving as active sites for grafting. The bacteria synthesize the desired protein for grafting and autonomously lyse to release it. The released functional moieties are locally grafted onto the active sites, generating the materials engineered by living grafting (MELGs). MELGs are resilient to perturbations because of both the bonding and the regeneration of functional domains synthesized by living cells. The programmability of the bacteria enables us to fabricate MELGs that can respond to external input, decompose a pollutant, reconstitute synthetic pathways for natural product synthesis, and purify mismatched DNA. Our work establishes a bacteria-assisted grafting strategy to functionalize materials with a broad range of biological activities in an integrated, flexible, and modular manner. A record of this paper's transparent peer review process is included in the supplemental information.
用生物大分子(如酶)对材料进行功能化处理在生物技术和生物医学领域有着广泛的应用。在这里,我们介绍一种由活细胞介导的接枝方法,以实现材料的功能化。我们使用聚合物支架来捕获工程细菌和微米大小的颗粒,这些颗粒上的化学基团是接枝的活性位点。细菌合成所需的接枝蛋白质,并自主裂解释放。释放出的功能分子局部接枝到活性位点上,生成活体接枝工程材料(MELGs)。由于活细胞合成的功能域具有粘合和再生功能,因此活接枝工程材料具有抗干扰能力。细菌的可编程性使我们能够制造出能够响应外部输入、分解污染物、重组天然产物合成途径以及纯化不匹配 DNA 的 MELGs。我们的工作建立了一种细菌辅助接枝策略,以集成、灵活和模块化的方式使材料具有广泛的生物活性。本文的同行评审过程透明,其记录见补充信息。