Revealing the grammar of small RNA secretion using interpretable machine learning.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2024-04-10 Epub Date: 2024-03-08 DOI:10.1016/j.xgen.2024.100522
Bahar Zirak, Mohsen Naghipourfar, Ali Saberi, Delaram Pouyabahar, Amirhossein Zarezadeh, Lixi Luo, Lisa Fish, Doowon Huh, Albertas Navickas, Ali Sharifi-Zarchi, Hani Goodarzi
{"title":"Revealing the grammar of small RNA secretion using interpretable machine learning.","authors":"Bahar Zirak, Mohsen Naghipourfar, Ali Saberi, Delaram Pouyabahar, Amirhossein Zarezadeh, Lixi Luo, Lisa Fish, Doowon Huh, Albertas Navickas, Ali Sharifi-Zarchi, Hani Goodarzi","doi":"10.1016/j.xgen.2024.100522","DOIUrl":null,"url":null,"abstract":"<p><p>Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in small extracellular vesicles, and within lipoprotein complexes. However, the mechanisms that govern their sorting and secretion are not well understood. Here, we present ExoGRU, a machine learning model that predicts small RNA secretion probabilities from primary RNA sequences. We experimentally validated the performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis. Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including known and novel RNA-binding proteins (RBPs), e.g., YBX1, HNRNPA2B1, and RBM24. We also developed a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space. Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms. In addition to providing deeper insight into small RNA secretion, this knowledge can be leveraged in therapeutic and synthetic biology applications.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100522"},"PeriodicalIF":11.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in small extracellular vesicles, and within lipoprotein complexes. However, the mechanisms that govern their sorting and secretion are not well understood. Here, we present ExoGRU, a machine learning model that predicts small RNA secretion probabilities from primary RNA sequences. We experimentally validated the performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis. Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including known and novel RNA-binding proteins (RBPs), e.g., YBX1, HNRNPA2B1, and RBM24. We also developed a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space. Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms. In addition to providing deeper insight into small RNA secretion, this knowledge can be leveraged in therapeutic and synthetic biology applications.

利用可解释的机器学习揭示小 RNA 分泌的语法。
小非编码 RNA 可通过多种机制分泌,包括外泌体分拣、小细胞外囊泡和脂蛋白复合物。然而,人们对其分选和分泌机制还不甚了解。在这里,我们介绍了一种机器学习模型 ExoGRU,它能根据原始 RNA 序列预测小 RNA 的分泌概率。我们通过 ExoGRU 引导的诱变和合成 RNA 序列分析实验验证了该模型的性能。此外,我们还利用 ExoGRU 揭示了小 RNA 分泌的顺式和反式因子,包括已知和新型 RNA 结合蛋白 (RBP),如 YBX1、HNRNPA2B1 和 RBM24。我们还开发了一种名为 exoCLIP 的新技术,它能揭示无细胞空间中 RBPs 的 RNA 相互作用组。我们的研究成果共同证明了机器学习在揭示新型生物学机制方面的威力。除了加深对小 RNA 分泌的了解,这些知识还可用于治疗和合成生物学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信