{"title":"A multi-objective optimization approach for beam pattern synthesis of UAV virtual rectangular antenna array","authors":"Fang Mei, Xinrong Guo, Hui Kang, Geng Sun, Tingting Zheng, Jianbo Wen","doi":"10.1002/jnm.3222","DOIUrl":null,"url":null,"abstract":"<p>Virtual antenna array (VAA) formed by unmanned aerial vehicle (UAV) antenna units using collaborative beamforming (CB) technology plays an important role in the air communication system, and can be used in radar, military, disaster rescue and other places. However, there are still some issues with the beam pattern formed by this method, such as high sidelobe level (SLL), high cost and low efficiency. In this article, each UAV carries an omnidirectional antenna unit, and a large number of UAVs form a UAV virtual rectangular antenna array (UVRAA) to communicate with the ground base station (BS). We formulate an overhead minimization and efficient communication multi-objective optimization problem (OMECMOP) which jointly optimize the excitation current weights of the UVRAA and reduce the number of UAVs in operation to improve the beam pattern, enhance the communication efficiency and decrease the overhead of UVRAA. In addition, we also propose an improved multi-objective multi-verse optimization algorithm based on the inverse <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation>$$ S $$</annotation>\n </semantics></math> decline curve type (ISDT-MOMVO) which introduces a strategy optimization initialization solution with quasi-opposition based learning (QBL) and a hybrid solution updating operators to solve the OMECMOP. The simulation results show that compared with other traditional swarm intelligence (SI) optimization algorithms the ISDT-MOMVO algorithm produces better beam pattern and the thinning rate can reach 50%.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual antenna array (VAA) formed by unmanned aerial vehicle (UAV) antenna units using collaborative beamforming (CB) technology plays an important role in the air communication system, and can be used in radar, military, disaster rescue and other places. However, there are still some issues with the beam pattern formed by this method, such as high sidelobe level (SLL), high cost and low efficiency. In this article, each UAV carries an omnidirectional antenna unit, and a large number of UAVs form a UAV virtual rectangular antenna array (UVRAA) to communicate with the ground base station (BS). We formulate an overhead minimization and efficient communication multi-objective optimization problem (OMECMOP) which jointly optimize the excitation current weights of the UVRAA and reduce the number of UAVs in operation to improve the beam pattern, enhance the communication efficiency and decrease the overhead of UVRAA. In addition, we also propose an improved multi-objective multi-verse optimization algorithm based on the inverse decline curve type (ISDT-MOMVO) which introduces a strategy optimization initialization solution with quasi-opposition based learning (QBL) and a hybrid solution updating operators to solve the OMECMOP. The simulation results show that compared with other traditional swarm intelligence (SI) optimization algorithms the ISDT-MOMVO algorithm produces better beam pattern and the thinning rate can reach 50%.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.