FDA-Approved Chimeric Antigen Receptor (CAR)-T Cell Therapy for Different Cancers-A Recent Perspective.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-03-08 DOI:10.1007/s12033-024-01090-0
R Thirumalaisamy, S Vasuki, S M Sindhu, T M Mothilal, V Srimathi, B Poornima, M Bhuvaneswari, Mohan Hariharan
{"title":"FDA-Approved Chimeric Antigen Receptor (CAR)-T Cell Therapy for Different Cancers-A Recent Perspective.","authors":"R Thirumalaisamy, S Vasuki, S M Sindhu, T M Mothilal, V Srimathi, B Poornima, M Bhuvaneswari, Mohan Hariharan","doi":"10.1007/s12033-024-01090-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is one of the most prevalent diseases in the world, and their rate of occurence has been increased in recent decades. Current review article, summarizes the novel treatment options Chimeric Antigen Receptor-T (CAR-T) cell therapy for various cancers constitute a major health and development challenge, impacting every aspect of sustainable development quoted by goal 3 good health and well-being of UN sustainable goals. WHO estimates that 70% of cancer deaths occur in low- and middle- income countries (LMICs) by 2030, LMICs are expected to bear the brunt of the expected 24.1 million new cancer cases per year. This current review article focuses and discussed about CAR-T cell therapy for various cancers against most prevalent non-communicable disease cancer disease stipulated by WHO and UN sustainable goals. Three literature databases Google scholar, Science Direct, PubMed was utilized to search and collect CAR-T cell treatment options for different cancers published articles sources in between January 2000 and December 2023. There were a total of 18,700 papers found, with 48 of them being found to be eligible focusing various cancer treatment by CAR-T cells utilized for the study. Based on the information gathered, CAR-T cell therapy treating different cancers and their merit and its advantages in heal and improve certain cancers was also discussed in this review article with their detailed molecular mechanisms. This article also gives an insight to utilize CAR-T cell treatment protocols for rejuvenating cancer patient from such ruthless cancer disease condition thereby improving life span of cancer patients and eradication of disease in some cases.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"469-483"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01090-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is one of the most prevalent diseases in the world, and their rate of occurence has been increased in recent decades. Current review article, summarizes the novel treatment options Chimeric Antigen Receptor-T (CAR-T) cell therapy for various cancers constitute a major health and development challenge, impacting every aspect of sustainable development quoted by goal 3 good health and well-being of UN sustainable goals. WHO estimates that 70% of cancer deaths occur in low- and middle- income countries (LMICs) by 2030, LMICs are expected to bear the brunt of the expected 24.1 million new cancer cases per year. This current review article focuses and discussed about CAR-T cell therapy for various cancers against most prevalent non-communicable disease cancer disease stipulated by WHO and UN sustainable goals. Three literature databases Google scholar, Science Direct, PubMed was utilized to search and collect CAR-T cell treatment options for different cancers published articles sources in between January 2000 and December 2023. There were a total of 18,700 papers found, with 48 of them being found to be eligible focusing various cancer treatment by CAR-T cells utilized for the study. Based on the information gathered, CAR-T cell therapy treating different cancers and their merit and its advantages in heal and improve certain cancers was also discussed in this review article with their detailed molecular mechanisms. This article also gives an insight to utilize CAR-T cell treatment protocols for rejuvenating cancer patient from such ruthless cancer disease condition thereby improving life span of cancer patients and eradication of disease in some cases.

Abstract Image

针对不同癌症的 FDA 批准嵌合抗原受体(CAR)-T 细胞疗法--最新视角。
癌症是世界上最普遍的疾病之一,近几十年来发病率不断上升。本期综述文章总结了针对各种癌症的新型治疗方案嵌合抗原受体-T(CAR-T)细胞疗法,该疗法对健康和发展构成重大挑战,影响到联合国可持续发展目标中目标3 "良好的健康和福祉 "所引述的可持续发展的方方面面。世卫组织估计,到 2030 年,70% 的癌症死亡病例发生在中低收入国家,预计每年新增的 2410 万癌症病例中,中低收入国家将首当其冲。本综述文章重点讨论了针对世卫组织和联合国可持续发展目标规定的最流行非传染性疾病癌症的各种癌症的 CAR-T 细胞疗法。本文利用 Google scholar、Science Direct 和 PubMed 三个文献数据库,搜索并收集了 2000 年 1 月至 2023 年 12 月间发表的不同癌症的 CAR-T 细胞治疗方案。共找到 18,700 篇论文,其中有 48 篇符合条件,重点介绍了本研究中使用的 CAR-T 细胞治疗各种癌症的方法。根据收集到的信息,这篇综述文章还讨论了治疗不同癌症的 CAR-T 细胞疗法及其在治疗和改善某些癌症方面的优点和优势,以及它们的详细分子机制。本文还深入探讨了如何利用 CAR-T 细胞治疗方案使癌症患者从无情的癌症疾病中恢复活力,从而延长癌症患者的寿命,并在某些情况下根除疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信