High-Precision Viral Detection Using Electrochemical Kinetic Profiling of Aptamer-Antigen Recognition in Clinical Samples and Machine Learning

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Payel Sen, Dr. Zijie Zhang, Dr. Sadman Sakib, Jimmy Gu, Wantong Li, Dr. Bal Ram Adhikari, Ariel Motsenyat, Jonathan L'Heureux-Hache, Jann C. Ang, Gurpreet Panesar, Prof. Bruno J. Salena, Prof. Dr. Debora Yamamura, Prof. Dr. Matthew S. Miller, Prof. Dr. Yingfu Li, Prof. Dr. Leyla Soleymani
{"title":"High-Precision Viral Detection Using Electrochemical Kinetic Profiling of Aptamer-Antigen Recognition in Clinical Samples and Machine Learning","authors":"Dr. Payel Sen,&nbsp;Dr. Zijie Zhang,&nbsp;Dr. Sadman Sakib,&nbsp;Jimmy Gu,&nbsp;Wantong Li,&nbsp;Dr. Bal Ram Adhikari,&nbsp;Ariel Motsenyat,&nbsp;Jonathan L'Heureux-Hache,&nbsp;Jann C. Ang,&nbsp;Gurpreet Panesar,&nbsp;Prof. Bruno J. Salena,&nbsp;Prof. Dr. Debora Yamamura,&nbsp;Prof. Dr. Matthew S. Miller,&nbsp;Prof. Dr. Yingfu Li,&nbsp;Prof. Dr. Leyla Soleymani","doi":"10.1002/anie.202400413","DOIUrl":null,"url":null,"abstract":"<p>High-precision viral detection at point of need with clinical samples plays a pivotal role in the diagnosis of infectious diseases and the control of a global pandemic. However, the complexity of clinical samples that often contain very low viral concentrations makes it a huge challenge to develop simple diagnostic devices that do not require any sample processing and yet are capable of meeting performance metrics such as very high sensitivity and specificity. Herein we describe a new single-pot and single-step electrochemical method that uses real-time kinetic profiling of the interaction between a high-affinity aptamer and an antigen on a viral surface. This method generates many data points per sample, which when combined with machine learning, can deliver highly accurate test results in a short testing time. We demonstrate this concept using both SARS-CoV-2 and Influenza A viruses as model viruses with specifically engineered high-affinity aptamers. Utilizing this technique to diagnose COVID-19 with 37 real human saliva samples results in a sensitivity and specificity of both 100 % (27 true negatives and 10 true positives, with 0 false negative and 0 false positive), which showcases the superb diagnostic precision of this method.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 20","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202400413","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202400413","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-precision viral detection at point of need with clinical samples plays a pivotal role in the diagnosis of infectious diseases and the control of a global pandemic. However, the complexity of clinical samples that often contain very low viral concentrations makes it a huge challenge to develop simple diagnostic devices that do not require any sample processing and yet are capable of meeting performance metrics such as very high sensitivity and specificity. Herein we describe a new single-pot and single-step electrochemical method that uses real-time kinetic profiling of the interaction between a high-affinity aptamer and an antigen on a viral surface. This method generates many data points per sample, which when combined with machine learning, can deliver highly accurate test results in a short testing time. We demonstrate this concept using both SARS-CoV-2 and Influenza A viruses as model viruses with specifically engineered high-affinity aptamers. Utilizing this technique to diagnose COVID-19 with 37 real human saliva samples results in a sensitivity and specificity of both 100 % (27 true negatives and 10 true positives, with 0 false negative and 0 false positive), which showcases the superb diagnostic precision of this method.

Abstract Image

利用电化学动力学分析临床样本中的适配体-抗原识别和机器学习实现高精度病毒检测
在临床样本需求点进行高精度病毒检测,对诊断传染病和控制全球大流行起着至关重要的作用。然而,由于临床样本的复杂性,样本中的病毒浓度往往很低,因此开发无需任何样本处理,但又能满足高灵敏度和高特异性等性能指标的简单诊断设备是一项巨大的挑战。在本文中,我们介绍了一种新的单锅、单步电化学方法,该方法利用实时动力学分析高亲和性适配体与病毒表面抗原之间的相互作用。这种方法能为每个样本生成许多数据点,与机器学习相结合,能在很短的测试时间内提供高度准确的测试结果。我们使用 SARS-CoV-2 和甲型流感病毒作为模型病毒,用专门设计的高亲和性适配体演示了这一概念。利用这种技术对 37 份真实人类唾液样本进行 COVID-19 诊断,结果灵敏度和特异性均达到 100%(27 例真阴性和 10 例真阳性,0 例假阴性和 0 例假阳性),这充分展示了这种方法极高的诊断精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信