Inherently integrated microfiber-based flexible proprioceptive sensor for feedback-controlled soft actuators

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hwajoong Kim, Hyunbin Na, Seungbeom Noh, Shinwon Chang, Jinho Kim, Taejune Kong, Gyowook Shin, Chankyu Lee, Seonggyu Lee, Yong-Lae Park, Sehoon Oh, Jaehong Lee
{"title":"Inherently integrated microfiber-based flexible proprioceptive sensor for feedback-controlled soft actuators","authors":"Hwajoong Kim, Hyunbin Na, Seungbeom Noh, Shinwon Chang, Jinho Kim, Taejune Kong, Gyowook Shin, Chankyu Lee, Seonggyu Lee, Yong-Lae Park, Sehoon Oh, Jaehong Lee","doi":"10.1038/s41528-024-00302-6","DOIUrl":null,"url":null,"abstract":"For the accurate and continuous control of soft actuators in dynamic environments, the movements of the soft actuators must be monitored in real-time. To this end, various soft actuators capable of self-monitoring have been developed by separately integrating sensing devices into actuators. However, integrating such heterogeneous sensing components into soft actuators results in structural complexity, high manufacturing costs, and poor interfacial stability. Here, we report on intelligent pneumatic fiber-reinforced soft actuators with an inherent flexible proprioceptive sensor that uses only the essential components of typical fiber-reinforced soft actuators. The inherent flexible proprioceptive sensor is achieved by leveraging two parallel conductive microfibers around an elastomeric chamber of the soft actuator, which simultaneously acts as both a capacitive bending sensor and radial expansion limiting fibers of typical fiber-reinforced soft actuators. The proprioceptive soft actuator exhibits excellent mechanical actuation up to 240° bending motion and proprioceptive sensing performance with high sensitivity of 1.2 pF rad−1. Mathematical analysis and simulations of the soft actuator can effectively predict the bending actuation and capacitive responses against input pressures. We demonstrate that proprioceptive soft actuators can be used to construct a soft gripping system and prosthetic hand which express various hand gestures and perform dexterous manipulation with real-time proprioceptive sensing capability.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-14"},"PeriodicalIF":12.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00302-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00302-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

For the accurate and continuous control of soft actuators in dynamic environments, the movements of the soft actuators must be monitored in real-time. To this end, various soft actuators capable of self-monitoring have been developed by separately integrating sensing devices into actuators. However, integrating such heterogeneous sensing components into soft actuators results in structural complexity, high manufacturing costs, and poor interfacial stability. Here, we report on intelligent pneumatic fiber-reinforced soft actuators with an inherent flexible proprioceptive sensor that uses only the essential components of typical fiber-reinforced soft actuators. The inherent flexible proprioceptive sensor is achieved by leveraging two parallel conductive microfibers around an elastomeric chamber of the soft actuator, which simultaneously acts as both a capacitive bending sensor and radial expansion limiting fibers of typical fiber-reinforced soft actuators. The proprioceptive soft actuator exhibits excellent mechanical actuation up to 240° bending motion and proprioceptive sensing performance with high sensitivity of 1.2 pF rad−1. Mathematical analysis and simulations of the soft actuator can effectively predict the bending actuation and capacitive responses against input pressures. We demonstrate that proprioceptive soft actuators can be used to construct a soft gripping system and prosthetic hand which express various hand gestures and perform dexterous manipulation with real-time proprioceptive sensing capability.

Abstract Image

用于反馈控制软致动器的固有集成微纤维柔性本体感觉传感器
为了在动态环境中对软执行器进行精确和连续的控制,必须对软执行器的运动进行实时监测。为此,通过将传感设备单独集成到致动器中,开发出了各种能够自我监测的软致动器。然而,将这种异构传感元件集成到软致动器中会导致结构复杂、制造成本高和界面稳定性差。在此,我们报告了带有固有柔性本体感觉传感器的智能气动纤维增强软推杆,该推杆仅使用了典型纤维增强软推杆的基本组件。固有的柔性本体感觉传感器是通过利用软推杆弹性腔周围的两条平行导电微纤维实现的,这两条微纤维同时充当典型纤维增强软推杆的电容弯曲传感器和径向膨胀限制纤维。本体感觉软致动器具有出色的机械致动性能,弯曲运动可达 240°,本体感觉传感性能灵敏度高达 1.2 pF rad-1。软致动器的数学分析和模拟可以有效预测弯曲致动和电容响应对输入压力的影响。我们证明,本体感觉软致动器可用于构建软抓握系统和假手,从而表达各种手势并进行灵巧的操作,同时具有实时本体感觉传感能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信