Eva Gril, Fabien Spicher, Alain Vanderpoorten, Germain Vital, Boris Brasseur, Emilie Gallet-Moron, Vincent Le Roux, Guillaume Decocq, Jonathan Lenoir, Ronan Marrec
{"title":"Ecological indicator values of understorey plants perform poorly to infer forest microclimate temperature","authors":"Eva Gril, Fabien Spicher, Alain Vanderpoorten, Germain Vital, Boris Brasseur, Emilie Gallet-Moron, Vincent Le Roux, Guillaume Decocq, Jonathan Lenoir, Ronan Marrec","doi":"10.1111/jvs.13241","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Question</h3>\n \n <p>Ecological indicator values (EIVs) reflect species‘ optimal conditions on an environmental gradient, such as temperature. Averaged over a community, they are used to quantify thermophilization stemming from climate change, i.e. the reshuffling of communities toward more warm-adapted species. In forests, understorey plant communities do not keep up with global warming and accumulate a climatic debt. Although the causes are still debated, this thermal lag may be partly explained by forest microclimate buffering. For the first time, we test whether community means of EIVs are able to capture microclimate (here, under forest canopies) temperature across, or also within forests.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>157 forest plots across three French deciduous forests covering a large macroclimatic gradient.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>To assess whether EIVs can be used to infer the mean and range of microclimate temperature in forests, we measured understorey air temperature for ca. 1 year (10 months) with sensors located 1 m above the ground. We surveyed bryophytes and vascular plants within 400-m<sup>2</sup> plots, and computed floristic temperature from ordinal-scale EIVs (Ellenberg, Julve) and degree-scale EIVs (ClimPlant, Bryophytes of Europe Traits) for both temperature and continentality, i.e. temperature annual range. Finally, we fitted linear models to assess whether EIVs could explain the mean and range of microclimate temperature in forests.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Vascular plant and bryophyte communities successfully reflected differences in mean annual temperatures across forests but largely failed to do so for microclimate variation within forests. Bryophytes did not perform better than vascular plants to infer microclimate conditions. The annual range of microclimate temperatures was poorly associated with ordinal-scale EIVs for continentality but was positively correlated with degree-scale EIVs for annual range within lowland forests, especially for vascular plant communities.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Overall, the capabilities of EIVs to infer microclimate was inconsistent. Refined EIVs for temperature are needed to capture forest microclimates experienced by understorey species.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"35 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13241","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13241","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Question
Ecological indicator values (EIVs) reflect species‘ optimal conditions on an environmental gradient, such as temperature. Averaged over a community, they are used to quantify thermophilization stemming from climate change, i.e. the reshuffling of communities toward more warm-adapted species. In forests, understorey plant communities do not keep up with global warming and accumulate a climatic debt. Although the causes are still debated, this thermal lag may be partly explained by forest microclimate buffering. For the first time, we test whether community means of EIVs are able to capture microclimate (here, under forest canopies) temperature across, or also within forests.
Location
157 forest plots across three French deciduous forests covering a large macroclimatic gradient.
Methods
To assess whether EIVs can be used to infer the mean and range of microclimate temperature in forests, we measured understorey air temperature for ca. 1 year (10 months) with sensors located 1 m above the ground. We surveyed bryophytes and vascular plants within 400-m2 plots, and computed floristic temperature from ordinal-scale EIVs (Ellenberg, Julve) and degree-scale EIVs (ClimPlant, Bryophytes of Europe Traits) for both temperature and continentality, i.e. temperature annual range. Finally, we fitted linear models to assess whether EIVs could explain the mean and range of microclimate temperature in forests.
Results
Vascular plant and bryophyte communities successfully reflected differences in mean annual temperatures across forests but largely failed to do so for microclimate variation within forests. Bryophytes did not perform better than vascular plants to infer microclimate conditions. The annual range of microclimate temperatures was poorly associated with ordinal-scale EIVs for continentality but was positively correlated with degree-scale EIVs for annual range within lowland forests, especially for vascular plant communities.
Conclusion
Overall, the capabilities of EIVs to infer microclimate was inconsistent. Refined EIVs for temperature are needed to capture forest microclimates experienced by understorey species.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.