Synthetic light curves of exoplanet transit using nanosatellite data

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
A. Fuentes , M. Solar
{"title":"Synthetic light curves of exoplanet transit using nanosatellite data","authors":"A. Fuentes ,&nbsp;M. Solar","doi":"10.1016/j.ascom.2024.100816","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a dataset of light curves with synthetic signals. BRITE light curves (a constellation of five nanosatellites) are the main source of this dataset. We create the synthetic light curves of exoplanet transit by applying a pre-processing to the BRITE data and an injection of transit according to the Mandel and Agol model with a constraint of stellar radius <span><math><mrow><mo>&lt;</mo><mn>3</mn><mo>.</mo><mn>08</mn><mrow><mo>[</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>s</mi><mi>u</mi><mi>n</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> and planetary radius between 0.95 and 2.1 <span><math><mrow><mo>[</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>j</mi><mi>u</mi><mi>p</mi></mrow></msub><mo>]</mo></mrow></math></span>. We apply a quality criterion, obtaining 597 Planet Candidate (PC) examples and 3126 Not Planet Candidate examples as a dataset. PCs are injected simulated planets and are not around unique stars. We design a Deep Learning (DL) model to be trained with the created dataset. The DL model is a modified AstroNet Convolutional Neural Network (CNN) from literature to detect possible exoplanets. After evaluation over the testing set we obtain an accuracy of 99.46%, precision of 100% (<span><math><mrow><mi>P</mi><mi>C</mi><mi>p</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span>) and a recall of 96.72% for the PC class (<span><math><mrow><mi>P</mi><mi>C</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></math></span>), and an area under the curve receiver operating characteristics (<span><math><mrow><mi>A</mi><mi>U</mi><mi>C</mi><mo>−</mo><mi>R</mi><mi>O</mi><mi>C</mi></mrow></math></span>) of 100%, overcoming the results of existing networks tested on BRITE data. We ultimately search for potential exoplanets using the pre-processed data from BRITE, finding signals similar to exoplanetary transits in the targets HD 039060, HD 022049, HD 036861 and HD 218396.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100816"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000313","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a dataset of light curves with synthetic signals. BRITE light curves (a constellation of five nanosatellites) are the main source of this dataset. We create the synthetic light curves of exoplanet transit by applying a pre-processing to the BRITE data and an injection of transit according to the Mandel and Agol model with a constraint of stellar radius <3.08[Rsun] and planetary radius between 0.95 and 2.1 [Rjup]. We apply a quality criterion, obtaining 597 Planet Candidate (PC) examples and 3126 Not Planet Candidate examples as a dataset. PCs are injected simulated planets and are not around unique stars. We design a Deep Learning (DL) model to be trained with the created dataset. The DL model is a modified AstroNet Convolutional Neural Network (CNN) from literature to detect possible exoplanets. After evaluation over the testing set we obtain an accuracy of 99.46%, precision of 100% (PCprecision) and a recall of 96.72% for the PC class (PCrecall), and an area under the curve receiver operating characteristics (AUCROC) of 100%, overcoming the results of existing networks tested on BRITE data. We ultimately search for potential exoplanets using the pre-processed data from BRITE, finding signals similar to exoplanetary transits in the targets HD 039060, HD 022049, HD 036861 and HD 218396.

利用超小型卫星数据合成系外行星过境光曲线
在这篇文章中,我们介绍了一个带有合成信号的光曲线数据集。BRITE光曲线(由五颗超小型卫星组成的星座)是该数据集的主要来源。我们通过对 BRITE 数据进行预处理,并根据 Mandel 和 Agol 模型(恒星半径<3.08[Rsun]和行星半径介于 0.95 和 2.1 [Rjup]之间的约束条件)注入凌日信号,创建系外行星凌日合成光曲线。我们采用质量标准,获得了 597 个行星候选(PC)实例和 3126 个非行星候选实例作为数据集。PC 是注入的模拟行星,并不围绕独一无二的恒星。我们设计了一个深度学习(DL)模型,用创建的数据集进行训练。该深度学习模型是一个经过修改的 AstroNet 卷积神经网络(CNN),来自文献,用于检测可能的系外行星。在对测试集进行评估后,我们获得了 99.46%的准确率、100% 的精确度(PCprecision)和 96.72% 的 PC 类召回率(PCrecall),以及 100%的曲线下接收器操作特性面积(AUC-ROC),超过了在 BRITE 数据上测试的现有网络的结果。我们最终利用 BRITE 的预处理数据搜索潜在的系外行星,在目标 HD 039060、HD 022049、HD 036861 和 HD 218396 中发现了类似系外行星凌日的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信