Alice S Ryan, Brock A Beamer, Ann L Gruber-Baldini, Rebecca L Craik, Justine Golden, Jack Guralnik, Marc C Hochberg, Kathleen K Mangione, Denise Orwig, Alan M Rathbun, Jay Magaziner
{"title":"Effects of Multicomponent Home-Based Intervention on Muscle Composition, Fitness, and Bone Density After Hip Fracture.","authors":"Alice S Ryan, Brock A Beamer, Ann L Gruber-Baldini, Rebecca L Craik, Justine Golden, Jack Guralnik, Marc C Hochberg, Kathleen K Mangione, Denise Orwig, Alan M Rathbun, Jay Magaziner","doi":"10.1093/gerona/glae078","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mechanistic factors on the pathway to improving independent ambulatory ability among hip fracture patients by a multicomponent home-based physical therapy intervention that emphasized aerobic, strength, balance, and functional training are unknown. The aim of this study was to determine the effects of 2 different home-based physical therapy programs on muscle area and attenuation (reflects muscle density) of the lower extremities, bone mineral density (BMD), and aerobic capacity.</p><p><strong>Methods: </strong>Randomized controlled trial of home-based 16 weeks of strength, endurance, balance, and function exercises (PUSH, n = 19) compared to seated active range-of-motion exercises and transcutaneous electrical neurostimulation (PULSE, n = 18) in community-dwelling adults >60 years of age within 26 weeks of hip fracture.</p><p><strong>Results: </strong>In PUSH and PULSE groups combined, the fractured leg had lower muscle area and muscle attenuation and higher subcutaneous fat than the nonfractured leg (p < .001) at baseline. At 16 weeks, mean muscle area of the fractured leg was higher in the PUSH than PULSE group (p = .04). Changes in muscle area were not significantly different when compared to the comparative PULSE group. There was a clinically relevant difference in change in femoral neck BMD between groups (p = .05) that showed an increase after PULSE and decrease after PUSH. There were generally no between-group differences in mean VO2peak tests at 16-week follow-up, except the PUSH group reached a higher max incline (p = .04).</p><p><strong>Conclusions: </strong>The treatment effects of a multicomponent home-based physical therapy intervention on muscle composition, BMD, and aerobic capacity were not significantly different than an active control intervention in older adults recovering from hip fracture.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT01783704.</p>","PeriodicalId":94243,"journal":{"name":"The journals of gerontology. Series A, Biological sciences and medical sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journals of gerontology. Series A, Biological sciences and medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mechanistic factors on the pathway to improving independent ambulatory ability among hip fracture patients by a multicomponent home-based physical therapy intervention that emphasized aerobic, strength, balance, and functional training are unknown. The aim of this study was to determine the effects of 2 different home-based physical therapy programs on muscle area and attenuation (reflects muscle density) of the lower extremities, bone mineral density (BMD), and aerobic capacity.
Methods: Randomized controlled trial of home-based 16 weeks of strength, endurance, balance, and function exercises (PUSH, n = 19) compared to seated active range-of-motion exercises and transcutaneous electrical neurostimulation (PULSE, n = 18) in community-dwelling adults >60 years of age within 26 weeks of hip fracture.
Results: In PUSH and PULSE groups combined, the fractured leg had lower muscle area and muscle attenuation and higher subcutaneous fat than the nonfractured leg (p < .001) at baseline. At 16 weeks, mean muscle area of the fractured leg was higher in the PUSH than PULSE group (p = .04). Changes in muscle area were not significantly different when compared to the comparative PULSE group. There was a clinically relevant difference in change in femoral neck BMD between groups (p = .05) that showed an increase after PULSE and decrease after PUSH. There were generally no between-group differences in mean VO2peak tests at 16-week follow-up, except the PUSH group reached a higher max incline (p = .04).
Conclusions: The treatment effects of a multicomponent home-based physical therapy intervention on muscle composition, BMD, and aerobic capacity were not significantly different than an active control intervention in older adults recovering from hip fracture.