Causes and consequences of gas bubble trauma on fish gill function.

IF 1.7 3区 生物学 Q4 PHYSIOLOGY
Naomi K Pleizier, Colin J Brauner
{"title":"Causes and consequences of gas bubble trauma on fish gill function.","authors":"Naomi K Pleizier, Colin J Brauner","doi":"10.1007/s00360-024-01538-4","DOIUrl":null,"url":null,"abstract":"<p><p>Total dissolved gas supersaturation (TDGS) occurs when air mixes with water under pressure, which can be caused by features such as hydroelectric dams and waterfalls. Total dissolved gas supersaturation can cause harmful bubbles to grow in the tissues of aquatic animals, a condition known as gas bubble trauma (GBT). As gills are the primary gas exchange surface for most fish, it is through the gills that elevated total dissolved gases enter the blood and tissues of a fish. We describe the role of the gills in admitting TDGS into the body and discuss potential effects of bubbles in the gills on blood oxygen and carbon dioxide diffusion, blood ion and pH homeostasis, and nitrogenous waste excretion, as well as downstream effects on aerobic swimming performance.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"739-747"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-024-01538-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Total dissolved gas supersaturation (TDGS) occurs when air mixes with water under pressure, which can be caused by features such as hydroelectric dams and waterfalls. Total dissolved gas supersaturation can cause harmful bubbles to grow in the tissues of aquatic animals, a condition known as gas bubble trauma (GBT). As gills are the primary gas exchange surface for most fish, it is through the gills that elevated total dissolved gases enter the blood and tissues of a fish. We describe the role of the gills in admitting TDGS into the body and discuss potential effects of bubbles in the gills on blood oxygen and carbon dioxide diffusion, blood ion and pH homeostasis, and nitrogenous waste excretion, as well as downstream effects on aerobic swimming performance.

Abstract Image

气泡创伤对鱼鳃功能的影响和后果
当空气在压力下与水混合时,就会产生溶解气体总过饱和(TDGS),水电大坝和瀑布等地貌都可能造成这种情况。总溶解气体过饱和会导致有害气泡在水生动物的组织中生长,这种情况被称为气泡创伤(GBT)。由于鳃是大多数鱼类的主要气体交换面,高浓度的总溶解气体正是通过鳃进入鱼类的血液和组织。我们描述了鳃在将 TDGS 引入体内方面的作用,并讨论了鳃中的气泡对血液中氧气和二氧化碳扩散、血液离子和 pH 平衡、含氮废物排泄的潜在影响,以及对有氧游泳性能的下游影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信