Biomimetic lizard robot for adapting to Martian surface terrain.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Guangming Chen, Long Qiao, Zhenwen Zhou, Xiang Lei, Meng Zou, Lutz Richter, Aihong Ji
{"title":"Biomimetic lizard robot for adapting to Martian surface terrain.","authors":"Guangming Chen, Long Qiao, Zhenwen Zhou, Xiang Lei, Meng Zou, Lutz Richter, Aihong Ji","doi":"10.1088/1748-3190/ad311d","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of the planet Mars still is a top priority in planetary science. The Mars surface is extensively covered with soil-like material. Current wheeled rovers on Mars have been occasionally experiencing immobilization instances in unexpectedly weak terrains. The development of Mars rovers adaptable to these terrains is instrumental in improving exploration efficiency. Inspired by locomotion of the desert lizard, this paper illustrates a biomimetic quadruped robot with structures of flexible active spine and toes. By accounting for spine lateral flexion and its coordination with four leg movements, three gaits of tripod, trot and turning are designed. The motions corresponding to the three gaits are conceptually and numerically analyzed. On the granular terrains analog to Martian surface, the gasping forces by the active toes are estimated. Then traversing tests for the robot to move on Martian soil surface analog with the three gaits were investigated. Moreover, the traversing characteristics for Martian rocky and slope surface analog are analyzed. Results show that the robot can traverse Martian soil surface analog with maximum forward speed 28.13 m s<sup>-1</sup>turning speed 1.94° s<sup>-1</sup>and obstacle height 74.85 mm. The maximum angle for climbing Martian soil slope analog is 28°, corresponding slippery rate 76.8%. It is predicted that this robot can adapt to Martian granular rough terrain with gentle slopes.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad311d","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of the planet Mars still is a top priority in planetary science. The Mars surface is extensively covered with soil-like material. Current wheeled rovers on Mars have been occasionally experiencing immobilization instances in unexpectedly weak terrains. The development of Mars rovers adaptable to these terrains is instrumental in improving exploration efficiency. Inspired by locomotion of the desert lizard, this paper illustrates a biomimetic quadruped robot with structures of flexible active spine and toes. By accounting for spine lateral flexion and its coordination with four leg movements, three gaits of tripod, trot and turning are designed. The motions corresponding to the three gaits are conceptually and numerically analyzed. On the granular terrains analog to Martian surface, the gasping forces by the active toes are estimated. Then traversing tests for the robot to move on Martian soil surface analog with the three gaits were investigated. Moreover, the traversing characteristics for Martian rocky and slope surface analog are analyzed. Results show that the robot can traverse Martian soil surface analog with maximum forward speed 28.13 m s-1turning speed 1.94° s-1and obstacle height 74.85 mm. The maximum angle for climbing Martian soil slope analog is 28°, corresponding slippery rate 76.8%. It is predicted that this robot can adapt to Martian granular rough terrain with gentle slopes.

适应火星表面地形的仿生蜥蜴机器人。
对火星的探索仍然是行星科学的重中之重,因为火星在过去具有类似地球的特性,而且当火星表面液态水丰富时,有可能孕育着微生物生命。火星表面广泛覆盖着土壤状物质和大小不一的岩石。目前在火星上行驶的轮式漫游车偶尔会在意外的软弱地形中出现无法移动的情况。开发能够适应这些地形的火星车有助于提高探测效率和扩大调查范围。许多沙漠动物在颗粒介质和岩石地形上都表现出卓越的穿越能力。受沙漠蜥蜴运动机制的启发,我们设计了一种具有灵活主动脊柱和脚趾结构的仿生四足机器人。步态规划考虑了脊柱运动与脚部运动的协调。机器人采用了三脚架、小跑和转弯三种步态,并对其运动进行了概念和数值分析。在类似火星表面的土壤和岩石地形上,估算了灵活脚趾的喘振力,并进行了实地测试,以评估机器人的穿越能力。通过实地测试得出的穿越能力结论是,该仿生机器人能够适应火星表面的地形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信