Assembly Theory: What It Does and What It Does Not Do.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Molecular Evolution Pub Date : 2024-04-01 Epub Date: 2024-03-07 DOI:10.1007/s00239-024-10163-2
Johannes Jaeger
{"title":"Assembly Theory: What It Does and What It Does Not Do.","authors":"Johannes Jaeger","doi":"10.1007/s00239-024-10163-2","DOIUrl":null,"url":null,"abstract":"<p><p>A recent publication in Nature has generated much heated discussion about evolution, its tendency towards increasing diversity and complexity, and its potential status above and beyond the known laws of fundamental physics. The argument at the heart of this controversy concerns assembly theory, a method to detect and quantify the influence of higher-level emergent causal constraints in computational worlds made of basic objects and their combinations. In this short essay, I briefly review the theory, its basic principles and potential applications. I then go on to critically examine its authors' assertions, concluding that assembly theory has merit but is not nearly as novel or revolutionary as claimed. It certainly does not provide any new explanation of biological evolution or natural selection, or a new grounding of biology in physics. In this regard, the presentation of the paper is starkly distorted by hype, which may explain some of the outrage it created.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"87-92"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10163-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A recent publication in Nature has generated much heated discussion about evolution, its tendency towards increasing diversity and complexity, and its potential status above and beyond the known laws of fundamental physics. The argument at the heart of this controversy concerns assembly theory, a method to detect and quantify the influence of higher-level emergent causal constraints in computational worlds made of basic objects and their combinations. In this short essay, I briefly review the theory, its basic principles and potential applications. I then go on to critically examine its authors' assertions, concluding that assembly theory has merit but is not nearly as novel or revolutionary as claimed. It certainly does not provide any new explanation of biological evolution or natural selection, or a new grounding of biology in physics. In this regard, the presentation of the paper is starkly distorted by hype, which may explain some of the outrage it created.

Abstract Image

装配理论:它能做什么,不能做什么。
自然》(Nature)杂志最近发表的一篇文章引起了人们对进化、进化的多样性和复杂性趋势以及进化超越已知基础物理定律的潜在地位的热烈讨论。这场争论的核心涉及组装理论,这是一种在由基本物体及其组合构成的计算世界中检测和量化高层次突发因果约束影响的方法。在这篇短文中,我将简要回顾该理论及其基本原理和潜在应用。然后,我将批判性地审视其作者的论断,最后得出结论:装配理论有其可取之处,但并不像所宣称的那样新颖或具有革命性。当然,它并没有为生物进化或自然选择提供任何新的解释,也没有为物理学中的生物学提供新的基础。在这方面,该论文的表述明显被炒作所扭曲,这也许是它引起愤怒的部分原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信