Chromatin structure in totipotent mouse early preimplantation embryos

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Masatoshi OOGA
{"title":"Chromatin structure in totipotent mouse early preimplantation embryos","authors":"Masatoshi OOGA","doi":"10.1262/jrd.2023-106","DOIUrl":null,"url":null,"abstract":"</p><p>Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (spermatozoa and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized eggs have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2023-106/figure/advpub_2023-106.png\"/>\nGraphical Abstract <span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (spermatozoa and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized eggs have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.

Abstract Image Graphical Abstract Fullsize Image
全能小鼠植入前早期胚胎的染色质结构
全能性是指单个细胞产生体内所有不同类型细胞的能力。末期分化的生殖细胞(精子和卵细胞)经过重编程后,在子代中获得全能性。自 20 世纪 90 年代以来,许多研究都聚焦于全能性的机制。表观遗传学重编程的概念对细胞的未分化和分化状态非常重要,随着这一概念的出现,人们对生殖细胞和受精卵的表观基因组进行了深入分析。然而,在早期的免疫染色研究中,很难获得详细的表观基因组信息。近年来,下一代测序技术的爆炸式发展使获取全基因组信息成为可能,而基因组编辑技术的兴起则为以前难以进行的基因敲除小鼠分析提供了便利。此外,活体成像可以有效地分析样本数量有限的合子和两细胞胚胎,并提供其他方法无法获得的生物学见解。在这篇综述中,我们将追溯利用这些先进技术的研究进展,从现在追溯到最早的年代。 图文摘要 全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信