On a sum of squares operator related to the Schrödinger equation with a magnetic field

IF 1 3区 数学 Q1 MATHEMATICS
Antonio Bove, Gregorio Chinni
{"title":"On a sum of squares operator related to the Schrödinger equation with a magnetic field","authors":"Antonio Bove,&nbsp;Gregorio Chinni","doi":"10.1007/s10231-024-01434-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the analytic and Gevrey regularity for a “sum of squares” operator closely connected to the Schrödinger equation with minimal coupling. We however assume that the (magnetic) vector potential has some degree of homogeneity and that the Hörmander bracket condition is satisfied. It is shown that the local analytic/Gevrey regularity of the solution is related to the multiplicities of the zeroes of the Lie bracket of the vector fields.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01434-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the analytic and Gevrey regularity for a “sum of squares” operator closely connected to the Schrödinger equation with minimal coupling. We however assume that the (magnetic) vector potential has some degree of homogeneity and that the Hörmander bracket condition is satisfied. It is shown that the local analytic/Gevrey regularity of the solution is related to the multiplicities of the zeroes of the Lie bracket of the vector fields.

Abstract Image

Abstract Image

关于与有磁场的薛定谔方程相关的平方和算子
我们研究了与薛定谔方程密切相关的 "平方和 "算子的解析正则性和 Gevrey 正则性,其耦合度极小。然而,我们假设(磁)矢量势具有一定程度的同质性,并且满足赫曼德括号条件。研究表明,解的局部解析/杰弗里正则性与矢量场列括号零点的乘积有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信