Wenwei Qiu, Dacheng Zhou, Wenbo Hui, Afimbo Reuben Kwabena, Yubo Xing, Yi Qian, Quan Li, Huayan Pu, Yangmin Xie
{"title":"Terrain-Shape-Adaptive Coverage Path Planning With Traversability Analysis","authors":"Wenwei Qiu, Dacheng Zhou, Wenbo Hui, Afimbo Reuben Kwabena, Yubo Xing, Yi Qian, Quan Li, Huayan Pu, Yangmin Xie","doi":"10.1007/s10846-024-02073-8","DOIUrl":null,"url":null,"abstract":"<p>Coverage path planning (CPP) is in great demand with applications in agriculture, mining, manufacturing, etc. Most research in this area focused on 2D CPP problems solving the coverage problem with irregular 2D maps. Comparatively, CPP on uneven terrains is not fully solved. When there are many slopy areas in the working field, it is necessary to adjust the path shape and make it adapt to the 3D terrain surface to save energy consumption. This article proposes a terrain-shape-adaptive CPP method with three significant features. First, the paths grow by themselves according to the local terrain surface shapes. Second, the growth rule utilizes the 3D terrain traversability analysis, which makes them automatically avoid entering hazardous zones. Third, the irregularly distributed paths are connected under an optimal sequence with an improved genetic algorithm. As a result, the method can provide an autonomously growing terrain-adaptive coverage path with high energy efficiency and coverage rate compared to previous research works. It is demonstrated on various maps and is proven to be robust to terrain conditions.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"22 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02073-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Coverage path planning (CPP) is in great demand with applications in agriculture, mining, manufacturing, etc. Most research in this area focused on 2D CPP problems solving the coverage problem with irregular 2D maps. Comparatively, CPP on uneven terrains is not fully solved. When there are many slopy areas in the working field, it is necessary to adjust the path shape and make it adapt to the 3D terrain surface to save energy consumption. This article proposes a terrain-shape-adaptive CPP method with three significant features. First, the paths grow by themselves according to the local terrain surface shapes. Second, the growth rule utilizes the 3D terrain traversability analysis, which makes them automatically avoid entering hazardous zones. Third, the irregularly distributed paths are connected under an optimal sequence with an improved genetic algorithm. As a result, the method can provide an autonomously growing terrain-adaptive coverage path with high energy efficiency and coverage rate compared to previous research works. It is demonstrated on various maps and is proven to be robust to terrain conditions.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).