Rogue waves on the periodic background of the Kuralay-II equation

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Yadong Zhong, Yi Zhang
{"title":"Rogue waves on the periodic background of the Kuralay-II equation","authors":"Yadong Zhong,&nbsp;Yi Zhang","doi":"10.1016/j.wavemoti.2024.103310","DOIUrl":null,"url":null,"abstract":"<div><p>We derive the rogue wave solutions of the Kuralay-II equation by applying the Darboux transformation method with the Lax pair on the periodic background. These solutions are represented using Jacobian elliptic functions: dnoidal and cnoidal. The rogue wave solutions can be obtained on the periodic background while the dnoidal travelling periodic wave and cnoidal travelling periodic wave are modulationally unstable with respect to the long-wave perturbations.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000404","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive the rogue wave solutions of the Kuralay-II equation by applying the Darboux transformation method with the Lax pair on the periodic background. These solutions are represented using Jacobian elliptic functions: dnoidal and cnoidal. The rogue wave solutions can be obtained on the periodic background while the dnoidal travelling periodic wave and cnoidal travelling periodic wave are modulationally unstable with respect to the long-wave perturbations.

库拉雷-II方程周期性背景上的无规则波
通过在周期背景上应用拉克斯对的达尔布克斯变换方法,我们推导出了库拉雷-II方程的流氓波解法。这些解使用雅各布椭圆函数表示:dnoidal 和 cnoidal。在周期背景上可以得到流氓波解,而 dnoidal 游走周期波和 cnoidal 游走周期波相对于长波扰动是调制不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信