High-Temperature Corrosion Behavior of Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C Austenitic Steels Depending on Dissolved Oxygen Concentration in Static Liquid Pb at 700 °C
IF 2.1 3区 材料科学Q2 METALLURGY & METALLURGICAL ENGINEERING
Valentyn Tsisar, Zhangjian Zhou, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys, Carsten Schroer
{"title":"High-Temperature Corrosion Behavior of Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C Austenitic Steels Depending on Dissolved Oxygen Concentration in Static Liquid Pb at 700 °C","authors":"Valentyn Tsisar, Zhangjian Zhou, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys, Carsten Schroer","doi":"10.1007/s11085-024-10233-2","DOIUrl":null,"url":null,"abstract":"<div><p>The corrosion behavior of the aluminum-alloyed austenitic steels Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C was investigated at 700 °C in static Pb for 1000 h as a function of the concentration of dissolved oxygen in the liquid metal. In Pb with ~ 5 × 10<sup>–9</sup> mass % dissolved oxygen, both steels showed dissolution. Depth of corrosion averaged 67 (± 18) µm and 78 (± 25) µm for Fe-18Ni-12Cr-2.3Al-Nb-C and Fe-18Ni-12Cr-2.9Al, respectively. In Pb with higher oxidation potential of 2 × 10<sup>–6</sup> mass %O, both steels showed protective and accelerated oxidation. The protective thin oxide film (≤ 1 µm) was composed of outermost Fe-rich, intermediate Cr-rich and inner Al-rich sublayers. The thicker oxide scale was of irregular thickness (2 ÷ 30 µm) and consisted of Fe–Cr mixed oxide with Ni-rich metallic inclusions.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"589 - 602"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10233-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The corrosion behavior of the aluminum-alloyed austenitic steels Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C was investigated at 700 °C in static Pb for 1000 h as a function of the concentration of dissolved oxygen in the liquid metal. In Pb with ~ 5 × 10–9 mass % dissolved oxygen, both steels showed dissolution. Depth of corrosion averaged 67 (± 18) µm and 78 (± 25) µm for Fe-18Ni-12Cr-2.3Al-Nb-C and Fe-18Ni-12Cr-2.9Al, respectively. In Pb with higher oxidation potential of 2 × 10–6 mass %O, both steels showed protective and accelerated oxidation. The protective thin oxide film (≤ 1 µm) was composed of outermost Fe-rich, intermediate Cr-rich and inner Al-rich sublayers. The thicker oxide scale was of irregular thickness (2 ÷ 30 µm) and consisted of Fe–Cr mixed oxide with Ni-rich metallic inclusions.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.