Effects of Hyporheic Exchange and Settlement on the Particle Size Distribution of Colloids

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Zhongtian Zhang, Guangqiu Jin, Hongwu Tang, Wenhui Shao, Qihao Jiang, Xiaorong Zhou, Haiyu Yuan, David Andrew Barry
{"title":"Effects of Hyporheic Exchange and Settlement on the Particle Size Distribution of Colloids","authors":"Zhongtian Zhang,&nbsp;Guangqiu Jin,&nbsp;Hongwu Tang,&nbsp;Wenhui Shao,&nbsp;Qihao Jiang,&nbsp;Xiaorong Zhou,&nbsp;Haiyu Yuan,&nbsp;David Andrew Barry","doi":"10.1007/s11242-024-02061-4","DOIUrl":null,"url":null,"abstract":"<div><p>Colloid particle size plays an important role in contaminant adsorption and clogging in the hyporheic zone, but it remains unclear how the particle size changes during the transport of colloids. This study investigated the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange via laboratory experiments and numerical simulations with two main factors settlement and hyporheic exchange being considered. The results show that the particle size distribution varies when colloids transport in hyporheic zone, and both settlement and hyporheic exchange are involved in the exchange of colloids between stream and streambed. Large-sized particles are mainly controlled by settlement and advection and thus their concentration in the overlying water decreases more quickly; but small-sized particles are mainly controlled by hyporheic exchange and thus their concentration decreases more slowly, and some particles can be resuspended. The increase of retention coefficient and settling velocity will accelerate the transfer of colloids into the streambed. This study may provide important insights into the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02061-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Colloid particle size plays an important role in contaminant adsorption and clogging in the hyporheic zone, but it remains unclear how the particle size changes during the transport of colloids. This study investigated the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange via laboratory experiments and numerical simulations with two main factors settlement and hyporheic exchange being considered. The results show that the particle size distribution varies when colloids transport in hyporheic zone, and both settlement and hyporheic exchange are involved in the exchange of colloids between stream and streambed. Large-sized particles are mainly controlled by settlement and advection and thus their concentration in the overlying water decreases more quickly; but small-sized particles are mainly controlled by hyporheic exchange and thus their concentration decreases more slowly, and some particles can be resuspended. The increase of retention coefficient and settling velocity will accelerate the transfer of colloids into the streambed. This study may provide important insights into the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange.

孔隙水交换和沉降对胶体粒径分布的影响
摘要 胶体粒径在底流区污染物吸附和堵塞过程中起着重要作用,但胶体在迁移过程中粒径如何变化仍不清楚。本研究通过实验室实验和数值模拟,研究了上覆水中胶体粒径的变化以及沉降和底流体交换的影响,主要考虑了沉降和底流体交换两个因素。结果表明,胶体在下垫面区迁移时,粒径分布会发生变化,沉降和下垫面交换都参与了溪流与河床之间的胶体交换。大颗粒主要受沉降和平流的控制,因此其在上覆水中的浓度下降较快;而小颗粒主要受微流体交换的控制,因此其浓度下降较慢,部分颗粒还可再悬浮。滞留系数和沉降速度的增加会加速胶体向河床的转移。这项研究可为了解上覆水中胶体粒径的变化以及沉降和流体交换的影响提供重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信