Pi-seq—A customizable multichannel syringe pump for microfluidics

IF 2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tim L. Czech , Philipp P. Nelson , Clemens Thölken , Patrick Meyer , Timo Hess , Ho-Ryun Chung , Till Adhikary
{"title":"Pi-seq—A customizable multichannel syringe pump for microfluidics","authors":"Tim L. Czech ,&nbsp;Philipp P. Nelson ,&nbsp;Clemens Thölken ,&nbsp;Patrick Meyer ,&nbsp;Timo Hess ,&nbsp;Ho-Ryun Chung ,&nbsp;Till Adhikary","doi":"10.1016/j.ohx.2024.e00517","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of single cell technologies resulted in growing demand for microfluidics in the biological sciences. Commercial platforms have remained expensive, inflexible, and non-customizable black boxes. We developed an open source, multichannel, zero-backflow microfluidics device based on syringe pumps controlled by a Raspberry Pi computer. It uses both readily available and 3D-printed parts as well as a custom PCB and is easily serviceable. Moreover, it is fully customizable for various applications. Total cost is under €600. We equipped one channel with a custom Peltier-based temperature controller for precise heating or cooling and a mixer mechanism to prevent sedimentation of the cells within the syringe. Depending on the cells in the sample, heating and cooling can be useful to maintain a beneficial environment or to slow down cellular processes and cell death, respectively. Combined with microfluidics consumables and a microscope, the device is capable of integration into a high quality droplet-based single cell RNA sequencing workflow as shown here. Analysis of a mixture of human and insect cells resulted in a dataset of 17,769 single cells and demonstrates reliable operation and separation.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"18 ","pages":"Article e00517"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000117/pdfft?md5=2b420c34a8516c9b5fc0bb0d5cd0d048&pid=1-s2.0-S2468067224000117-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of single cell technologies resulted in growing demand for microfluidics in the biological sciences. Commercial platforms have remained expensive, inflexible, and non-customizable black boxes. We developed an open source, multichannel, zero-backflow microfluidics device based on syringe pumps controlled by a Raspberry Pi computer. It uses both readily available and 3D-printed parts as well as a custom PCB and is easily serviceable. Moreover, it is fully customizable for various applications. Total cost is under €600. We equipped one channel with a custom Peltier-based temperature controller for precise heating or cooling and a mixer mechanism to prevent sedimentation of the cells within the syringe. Depending on the cells in the sample, heating and cooling can be useful to maintain a beneficial environment or to slow down cellular processes and cell death, respectively. Combined with microfluidics consumables and a microscope, the device is capable of integration into a high quality droplet-based single cell RNA sequencing workflow as shown here. Analysis of a mixture of human and insect cells resulted in a dataset of 17,769 single cells and demonstrates reliable operation and separation.

Abstract Image

Pi-seq-A 用于微流控的可定制多通道注射泵
单细胞技术的出现导致生物科学领域对微流体技术的需求不断增长。商业平台仍然是昂贵、不灵活和不可定制的黑盒子。我们开发了一种开源、多通道、零回流微流体设备,它基于由 Raspberry Pi 计算机控制的注射泵。它既使用了现成的 3D 打印部件,也使用了定制的印刷电路板,而且易于维修。此外,它还可根据各种应用进行完全定制。总成本不到 600 欧元。我们为其中一个通道配备了定制的珀尔帖(Peltier)温度控制器,用于精确加热或冷却,还配备了一个混合器装置,防止细胞在注射器内沉淀。根据样品中细胞的不同,加热和冷却可分别用于维持有益的环境或减缓细胞过程和细胞死亡。该装置与微流控耗材和显微镜相结合,能够集成到基于液滴的高质量单细胞 RNA 测序工作流程中,如图所示。对人类和昆虫细胞混合物的分析产生了一个包含 17,769 个单细胞的数据集,展示了可靠的操作和分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HardwareX
HardwareX Engineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍: HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信