{"title":"A differential scheme for the effective conductivity of microinhomogeneous materials with the Hall effect","authors":"Mikhail Markov, Anatoly Markov, Valery Levin","doi":"10.1016/j.ijengsci.2024.104051","DOIUrl":null,"url":null,"abstract":"<div><p>A differential scheme is proposed for the calculation of the components of the effective electrical conductivity tensor of a microinhomogeneous material taking into account the Hall effect. The presence of the Hall effect results in an appearance of asymmetry of the components of the conductivity tensor and a dependence of these components on the magnitude of the magnetic field applied to the material. In this case, the differential scheme leads to a system of matrix differential equations that were solved numerically in the current work. This solution was obtained for materials containing spherical or cylindrical inclusions. In the case of cylindrical inclusions, the results were obtained for inclusions with the symmetry axes parallel or orthogonal to the magnetic field. A comparison of the results obtained by the proposed methodology to the low concentration approximation was carried out.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"198 ","pages":"Article 104051"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000351","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A differential scheme is proposed for the calculation of the components of the effective electrical conductivity tensor of a microinhomogeneous material taking into account the Hall effect. The presence of the Hall effect results in an appearance of asymmetry of the components of the conductivity tensor and a dependence of these components on the magnitude of the magnetic field applied to the material. In this case, the differential scheme leads to a system of matrix differential equations that were solved numerically in the current work. This solution was obtained for materials containing spherical or cylindrical inclusions. In the case of cylindrical inclusions, the results were obtained for inclusions with the symmetry axes parallel or orthogonal to the magnetic field. A comparison of the results obtained by the proposed methodology to the low concentration approximation was carried out.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.