Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability.

Cell metabolism Pub Date : 2024-05-07 Epub Date: 2024-03-05 DOI:10.1016/j.cmet.2024.02.004
Stanislaw Deja, Justin A Fletcher, Chai-Wan Kim, Blanka Kucejova, Xiaorong Fu, Monika Mizerska, Morgan Villegas, Natalia Pudelko-Malik, Nicholas Browder, Melissa Inigo-Vollmer, Cameron J Menezes, Prashant Mishra, Eric D Berglund, Jeffrey D Browning, John P Thyfault, Jamey D Young, Jay D Horton, Shawn C Burgess
{"title":"Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability.","authors":"Stanislaw Deja, Justin A Fletcher, Chai-Wan Kim, Blanka Kucejova, Xiaorong Fu, Monika Mizerska, Morgan Villegas, Natalia Pudelko-Malik, Nicholas Browder, Melissa Inigo-Vollmer, Cameron J Menezes, Prashant Mishra, Eric D Berglund, Jeffrey D Browning, John P Thyfault, Jamey D Young, Jay D Horton, Shawn C Burgess","doi":"10.1016/j.cmet.2024.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.02.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.

肝脏丙二酰-CoA 的合成通过抑制脂肪氧化、丙酮酸羧化和氨基酸供应来抑制葡萄糖生成。
乙酰-CoA羧化酶(ACC)通过产生丙二酰-CoA(一种新脂肪生成的底物和 CPT-1 介导的脂肪氧化的抑制剂)来促进肝脏的膳食代谢。我们报告说,抑制 ACC 还会对新陈代谢产生意想不到的副作用。肝脏特异性双 ACC1/2 基因敲除(LDKO)或药物抑制 ACC 可通过激活肝脏 CPT-1 和丙酮酸羧化酶通量,在进食状态下增加无胰岛素生成、三羧酸(TCA)循环中间产物和葡萄糖生成。禁食本应使 ACC 的作用边缘化,但 LDKO 小鼠在禁食期间保持了 TCA 循环中间产物的升高和血糖的稳定。伴随这些影响的是蛋白质分解的代偿性诱导和葡萄糖生成所需的氨基酸供应的增加,而这又被进食时蛋白质合成的增加所抵消。这种适应性可能与 Nrf2 活性有关,Nrf2 活性由 ACC 抑制诱导,并与禁食氨基酸相关。这些发现揭示了丙二酰-CoA合成在肝脏中的意想不到的作用,并为药物ACC抑制的更广泛影响提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信