{"title":"Gustatory Responsiveness of Honey Bees Colonized with a Defined or Conventional Gut Microbiota.","authors":"Shota Suenami, Masato Sato, Ryo Miyazaki","doi":"10.1264/jsme2.ME23081","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbes have many beneficial functions for host animals, such as food digestion and development of the immune system. An increasing number of studies report that gut bacteria also affect host neural function and behavior. The sucrose responsiveness of the western honey bee Apis mellifera, which harbors a characteristic gut microbiota, was recently reported to be increased by the presence of gut microbes. However, this responsiveness may vary depending on the experimental design, as animal behavior may be modulated by physiological states and environmental conditions. To evaluate the robustness of the effects of the gut microbiota on host gustatory responsiveness, we herein examined the sucrose responsiveness of honey bees colonized with a defined bacterial community or a conventional gut microbiota extracted from a field-collected bee. Although colonization was experimentally verified, sucrose responsiveness did not significantly differ among treatments after the 2- or 5-h starvation period. We concluded that the sucrose responsiveness of A. mellifera is not always affected by its gut microbiota. Therefore, host physiological conditions and environmental factors need to be considered when evaluating the impact of the gut microbiota on host neural function and behavior.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME23081","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microbes have many beneficial functions for host animals, such as food digestion and development of the immune system. An increasing number of studies report that gut bacteria also affect host neural function and behavior. The sucrose responsiveness of the western honey bee Apis mellifera, which harbors a characteristic gut microbiota, was recently reported to be increased by the presence of gut microbes. However, this responsiveness may vary depending on the experimental design, as animal behavior may be modulated by physiological states and environmental conditions. To evaluate the robustness of the effects of the gut microbiota on host gustatory responsiveness, we herein examined the sucrose responsiveness of honey bees colonized with a defined bacterial community or a conventional gut microbiota extracted from a field-collected bee. Although colonization was experimentally verified, sucrose responsiveness did not significantly differ among treatments after the 2- or 5-h starvation period. We concluded that the sucrose responsiveness of A. mellifera is not always affected by its gut microbiota. Therefore, host physiological conditions and environmental factors need to be considered when evaluating the impact of the gut microbiota on host neural function and behavior.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.