Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Journal of microencapsulation Pub Date : 2024-05-01 Epub Date: 2024-03-07 DOI:10.1080/02652048.2024.2324810
Mengyao Cui, Yaqing Li, Jing Li, Nini Jia, Wenxuan Cao, Zhengguang Li, Xiang Li, Xiaoqin Chu
{"title":"Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride.","authors":"Mengyao Cui, Yaqing Li, Jing Li, Nini Jia, Wenxuan Cao, Zhengguang Li, Xiang Li, Xiaoqin Chu","doi":"10.1080/02652048.2024.2324810","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE).</p><p><strong>Methods: </strong>SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin.</p><p><strong>Results: </strong>The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively.</p><p><strong>Conclusion: </strong>SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"157-169"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2324810","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE).

Methods: SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin.

Results: The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively.

Conclusion: SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.

构建各种脂质载体,研究盐酸西诺明的透皮渗透机制。
目的研究盐酸西诺明(SN)的透皮机制,并比较固体脂质纳米颗粒(SLN)、脂质体(LS)和纳米乳液(NE)透皮给药的差异:方法:分别采用超声、乙醇注射和自发乳化法制备了盐酸西诺明(SN-SLN)、盐酸西诺明(SN-LS)和盐酸西诺明(SN-NE)。采用傅立叶变换红外光谱(FTIR)、电导率分析(DSC)、体外皮肤渗透、活化能(Ea)分析等方法探讨药物在皮肤中的渗透机理:结果:SN-SLN、SN-LS和SN-LS的粒径和封装效率分别为126.60 nm、43.23 ± 0.48%(w/w);SN-SLN、SN-LS和SN-LS的粒径和封装效率分别为224.90 nm、78.31 ± 0.75%(w/w);SN-SLN、SN-LS和SN-LS的粒径和封装效率分别为83.22 nm、89.01 ± 2.16%(w/w)。傅立叶变换红外光谱和 DSC 显示,这些制剂对角质层脂质结构有不同程度的影响,影响程度依次为 SLN > NE > LS。SN-SLN、SN-LS 和 SN-NE 穿过皮肤的 Ea 值分别为 2.504、1.161 和 2.510 kcal/mol:结论:SLN 对皮肤角质层的改变程度更大,从而使 SN 更有效地渗透皮肤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
文献相关原料
公司名称
产品信息
阿拉丁
phosphoric acid
阿拉丁
absolute ethanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信