Potential applications of artificial intelligence in image analysis in cornea diseases: a review.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Kai Yuan Tey, Ezekiel Ze Ken Cheong, Marcus Ang
{"title":"Potential applications of artificial intelligence in image analysis in cornea diseases: a review.","authors":"Kai Yuan Tey, Ezekiel Ze Ken Cheong, Marcus Ang","doi":"10.1186/s40662-024-00376-3","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is an emerging field which could make an intelligent healthcare model a reality and has been garnering traction in the field of medicine, with promising results. There have been recent developments in machine learning and/or deep learning algorithms for applications in ophthalmology-primarily for diabetic retinopathy, and age-related macular degeneration. However, AI research in the field of cornea diseases is relatively new. Algorithms have been described to assist clinicians in diagnosis or detection of cornea conditions such as keratoconus, infectious keratitis and dry eye disease. AI may also be used for segmentation and analysis of cornea imaging or tomography as an adjunctive tool. Despite the potential advantages that these new technologies offer, there are challenges that need to be addressed before they can be integrated into clinical practice. In this review, we aim to summarize current literature and provide an update regarding recent advances in AI technologies pertaining to corneal diseases, and its potential future application, in particular pertaining to image analysis.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40662-024-00376-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is an emerging field which could make an intelligent healthcare model a reality and has been garnering traction in the field of medicine, with promising results. There have been recent developments in machine learning and/or deep learning algorithms for applications in ophthalmology-primarily for diabetic retinopathy, and age-related macular degeneration. However, AI research in the field of cornea diseases is relatively new. Algorithms have been described to assist clinicians in diagnosis or detection of cornea conditions such as keratoconus, infectious keratitis and dry eye disease. AI may also be used for segmentation and analysis of cornea imaging or tomography as an adjunctive tool. Despite the potential advantages that these new technologies offer, there are challenges that need to be addressed before they can be integrated into clinical practice. In this review, we aim to summarize current literature and provide an update regarding recent advances in AI technologies pertaining to corneal diseases, and its potential future application, in particular pertaining to image analysis.

人工智能在角膜疾病图像分析中的潜在应用:综述。
人工智能(AI)是一个新兴领域,它可以使智能医疗模式成为现实,并在医学领域获得了广泛的关注,取得了可喜的成果。最近,机器学习和/或深度学习算法在眼科领域的应用有了新的发展--主要用于糖尿病视网膜病变和老年性黄斑变性。然而,角膜疾病领域的人工智能研究相对较新。已有算法用于协助临床医生诊断或检测角膜疾病,如角膜炎、感染性角膜炎和干眼症。作为一种辅助工具,人工智能还可用于角膜成像或断层扫描的分割和分析。尽管这些新技术具有潜在的优势,但在将其融入临床实践之前,还需要应对一些挑战。在这篇综述中,我们旨在总结当前的文献,并提供有关角膜疾病的人工智能技术最新进展及其未来的潜在应用,特别是在图像分析方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信