RADU GROUPS ACTING ON TREES ARE CCR

IF 0.5 4区 数学 Q3 MATHEMATICS
LANCELOT SEMAL
{"title":"RADU GROUPS ACTING ON TREES ARE CCR","authors":"LANCELOT SEMAL","doi":"10.1017/s1446788723000381","DOIUrl":null,"url":null,"abstract":"<p>We classify the irreducible unitary representations of closed simple groups of automorphisms of trees acting <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-transitively on the boundary and whose local action at every vertex contains the alternating group. As an application, we confirm Claudio Nebbia’s CCR conjecture on trees for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(d_0,d_1)$</span></span></img></span></span>-semi-regular trees such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d_0,d_1\\in \\Theta $</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\Theta $</span></span></img></span></span> is an asymptotically dense set of positive integers.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000381","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We classify the irreducible unitary representations of closed simple groups of automorphisms of trees acting Abstract Image$2$-transitively on the boundary and whose local action at every vertex contains the alternating group. As an application, we confirm Claudio Nebbia’s CCR conjecture on trees for Abstract Image$(d_0,d_1)$-semi-regular trees such that Abstract Image$d_0,d_1\in \Theta $, where Abstract Image$\Theta $ is an asymptotically dense set of positive integers.

作用于树木的雷达群是 ccr
我们对在边界上以 2 美元反式作用的树的封闭简单自变群的不可还原单元代表进行了分类,这些自变群在每个顶点的局部作用都包含交替群。作为应用,我们证实了克劳迪奥-内比亚(Claudio Nebbia)关于$(d_0,d_1)$半规则树的CCR猜想,即$d_0,d_1\in \Theta $,其中$\Theta $是正整数的渐近密集集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信