Higher order interpolative geometries and gradient regularity in evolutionary obstacle problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sunghan Kim, Kaj Nyström
{"title":"Higher order interpolative geometries and gradient regularity in evolutionary obstacle problems","authors":"Sunghan Kim,&nbsp;Kaj Nyström","doi":"10.1016/j.matpur.2024.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>We prove new optimal <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity results for obstacle problems involving evolutionary <em>p</em>-Laplace type operators in the degenerate regime <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. Our main results include the optimal regularity improvement at free boundary points in intrinsic backward <em>p</em>-paraboloids, up to the critical exponent, <span><math><mi>α</mi><mo>≤</mo><mn>2</mn><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>, and the optimal regularity across the free boundaries in the full cylinders up to a universal threshold. Moreover, we provide an intrinsic criterion by which the optimal regularity improvement at free boundaries can be extended to the entire cylinders. An important feature of our analysis is that we do not impose any assumption on the time derivative of the obstacle. Our results are formulated in function spaces associated to what we refer to as higher order or <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> intrinsic interpolative geometries.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000266/pdfft?md5=3fbde8e03d141f6fd4be7e7aa45c36ea&pid=1-s2.0-S0021782424000266-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove new optimal C1,α regularity results for obstacle problems involving evolutionary p-Laplace type operators in the degenerate regime p>2. Our main results include the optimal regularity improvement at free boundary points in intrinsic backward p-paraboloids, up to the critical exponent, α2/(p2), and the optimal regularity across the free boundaries in the full cylinders up to a universal threshold. Moreover, we provide an intrinsic criterion by which the optimal regularity improvement at free boundaries can be extended to the entire cylinders. An important feature of our analysis is that we do not impose any assumption on the time derivative of the obstacle. Our results are formulated in function spaces associated to what we refer to as higher order or C1,α intrinsic interpolative geometries.

进化障碍问题中的高阶内插几何和梯度正则性
我们证明了涉及退化机制中演化拉普拉斯型算子的障碍问题的新最优正则性结果。我们的主要结果包括本征后向-抛物面中自由边界点的最优正则性改进,直至临界指数 ,以及全圆柱体中跨自由边界的最优正则性,直至一个普遍阈值。此外,我们还提供了一个内在标准,通过这个标准,自由边界上的最优正则性改进可以扩展到整个圆柱体。我们分析的一个重要特点是,我们不对障碍物的时间导数施加任何假设。我们的结果是在与我们所说的高阶或内在插值几何相关的函数空间中得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信