Large-area MoOx/c-Si heterojunction solar cells with a ICO/Ag back reflector

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Xu Wang, Bowen Ding, Yurong Zhou, Dongming Zhao, Fanying Meng, Hui Yan, Rui Life, Haiwei Huang, Zhidan Hao, Yuqin Zhou, Fengzhen Liu
{"title":"Large-area MoOx/c-Si heterojunction solar cells with a ICO/Ag back reflector","authors":"Xu Wang,&nbsp;Bowen Ding,&nbsp;Yurong Zhou,&nbsp;Dongming Zhao,&nbsp;Fanying Meng,&nbsp;Hui Yan,&nbsp;Rui Life,&nbsp;Haiwei Huang,&nbsp;Zhidan Hao,&nbsp;Yuqin Zhou,&nbsp;Fengzhen Liu","doi":"10.1002/pip.3796","DOIUrl":null,"url":null,"abstract":"<p>Compound/silicon heterojunction (SCH) solar cells have been widely studied because of the low parasitic absorption of the window layer, high short-circuit current, and simple preparation process. So far, most reported SCH solar cells are small-area devices. By depositing MoO<sub>x</sub> hole transport layer using hot-wire oxidation–sublimation deposition technique and employing a front-contact back-junction cell architecture, the large-area SCH solar cells are successfully fabricated on M6 (166 mm) n-type silicon wafers. Indium cerium oxide (ICO) film with the optimal thickness of about 110 nm is inserted between MoO<sub>x</sub> and Ag. The ICO/Ag stack functions well as a back reflector and is beneficial for increasing the short-circuit current density, reducing the contact resistance, and improving the device stability. A power conversion efficiency of 21.59% is achieved on the champion SCH solar cell with the device area of 274.15 cm<sup>2</sup>.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"599-606"},"PeriodicalIF":8.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3796","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Compound/silicon heterojunction (SCH) solar cells have been widely studied because of the low parasitic absorption of the window layer, high short-circuit current, and simple preparation process. So far, most reported SCH solar cells are small-area devices. By depositing MoOx hole transport layer using hot-wire oxidation–sublimation deposition technique and employing a front-contact back-junction cell architecture, the large-area SCH solar cells are successfully fabricated on M6 (166 mm) n-type silicon wafers. Indium cerium oxide (ICO) film with the optimal thickness of about 110 nm is inserted between MoOx and Ag. The ICO/Ag stack functions well as a back reflector and is beneficial for increasing the short-circuit current density, reducing the contact resistance, and improving the device stability. A power conversion efficiency of 21.59% is achieved on the champion SCH solar cell with the device area of 274.15 cm2.

Abstract Image

带 ICO/Ag 背反射器的大面积 MoOx/c-Si 异质结太阳能电池
化合物/硅异质结(SCH)太阳能电池具有窗口层寄生吸收低、短路电流大、制备工艺简单等优点,因此被广泛研究。迄今为止,大多数报道的 SCH 太阳能电池都是小面积器件。通过使用热丝氧化-升华沉积技术沉积氧化铟铈空穴传输层,并采用前接触后结电池结构,在 M6(166 毫米)n 型硅晶片上成功制造出了大面积 SCH 太阳能电池。在氧化铟和氧化银之间插入了最佳厚度约为 110 nm 的氧化铟(ICO)薄膜。ICO/Ag 叠层具有良好的背反射功能,有利于提高短路电流密度、降低接触电阻和改善器件稳定性。器件面积为 274.15 平方厘米的冠军 SCH 太阳能电池的功率转换效率达到 21.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信