{"title":"Multimodal audio-visual robot fusing 3D CNN and CRNN for player behavior recognition and prediction in basketball matches","authors":"Haiyan Wang","doi":"10.3389/fnbot.2024.1284175","DOIUrl":null,"url":null,"abstract":"<sec><title>Introduction</title><p>Intelligent robots play a crucial role in enhancing efficiency, reducing costs, and improving safety in the logistics industry. However, traditional path planning methods often struggle to adapt to dynamic environments, leading to issues such as collisions and conflicts. This study aims to address the challenges of path planning and control for logistics robots in complex environments.</p></sec><sec><title>Methods</title><p>The proposed method integrates information from different perception modalities to achieve more accurate path planning and obstacle avoidance control, thereby enhancing the autonomy and reliability of logistics robots. Firstly, a 3D convolutional neural network (CNN) is employed to learn the feature representation of objects in the environment for object recognition. Next, long short-term memory (LSTM) is used to model spatio-temporal features and predict the behavior and trajectory of dynamic obstacles. This enables the robot to accurately predict the future position of obstacles in complex environments, reducing collision risks. Finally, the Dijkstra algorithm is applied for path planning and control decisions to ensure the robot selects the optimal path in various scenarios.</p></sec><sec><title>Results</title><p>Experimental results demonstrate the effectiveness of the proposed method in terms of path planning accuracy and obstacle avoidance performance. The method outperforms traditional approaches, showing significant improvements in both aspects.</p></sec><sec><title>Discussion</title><p>The intelligent path planning and control scheme presented in this paper enhances the practicality of logistics robots in complex environments, thereby promoting efficiency and safety in the logistics industry.</p></sec>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"98 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1284175","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Intelligent robots play a crucial role in enhancing efficiency, reducing costs, and improving safety in the logistics industry. However, traditional path planning methods often struggle to adapt to dynamic environments, leading to issues such as collisions and conflicts. This study aims to address the challenges of path planning and control for logistics robots in complex environments.
Methods
The proposed method integrates information from different perception modalities to achieve more accurate path planning and obstacle avoidance control, thereby enhancing the autonomy and reliability of logistics robots. Firstly, a 3D convolutional neural network (CNN) is employed to learn the feature representation of objects in the environment for object recognition. Next, long short-term memory (LSTM) is used to model spatio-temporal features and predict the behavior and trajectory of dynamic obstacles. This enables the robot to accurately predict the future position of obstacles in complex environments, reducing collision risks. Finally, the Dijkstra algorithm is applied for path planning and control decisions to ensure the robot selects the optimal path in various scenarios.
Results
Experimental results demonstrate the effectiveness of the proposed method in terms of path planning accuracy and obstacle avoidance performance. The method outperforms traditional approaches, showing significant improvements in both aspects.
Discussion
The intelligent path planning and control scheme presented in this paper enhances the practicality of logistics robots in complex environments, thereby promoting efficiency and safety in the logistics industry.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.