David L. A. Flack, Chris Lattimore, Mark Seltzer, Michael D. Silverstone, Matthew Lehnert, Humphrey W. Lean, Jon C. Petch, Steve Willington
{"title":"How do operational meteorologists perceive model performance for elevated convection?","authors":"David L. A. Flack, Chris Lattimore, Mark Seltzer, Michael D. Silverstone, Matthew Lehnert, Humphrey W. Lean, Jon C. Petch, Steve Willington","doi":"10.1002/asl.1213","DOIUrl":null,"url":null,"abstract":"<p>Operational Meteorologists (OMs) in the Met Office have a perception that elevated convection is not well represented in kilometre-scale models, which are generally associated with an improved representation of convection. Here, we consider why there may be a problem with representing elevated convection and consider how OMs judge the model to be poor so often. Three OMs have subjectively scored and classified observed elevated convection cases over the UK from 2017 to 2020. Continental plumes (warm, moist, air coming from the near continent or Africa) account for 73% of the cases. The most frequent errors are associated with (i) location, (ii) organisation, (iii) timing and (iv) intensity of the convection. Thus, OMs perceive that the biggest problem with predicting elevated convection is constraining the location of the convective events. The location errors are particularly prevalent for events coming to the UK from the near continent. The location errors are most frequently identified for flow regimes coming from the near continent in weakly forced synoptic conditions. The identification of this problem enables the specific targeting of research into continental plumes (for UK elevated convection) but also raises questions around the role of lateral boundary conditions in the forecasts of elevated convection.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1213","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1213","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Operational Meteorologists (OMs) in the Met Office have a perception that elevated convection is not well represented in kilometre-scale models, which are generally associated with an improved representation of convection. Here, we consider why there may be a problem with representing elevated convection and consider how OMs judge the model to be poor so often. Three OMs have subjectively scored and classified observed elevated convection cases over the UK from 2017 to 2020. Continental plumes (warm, moist, air coming from the near continent or Africa) account for 73% of the cases. The most frequent errors are associated with (i) location, (ii) organisation, (iii) timing and (iv) intensity of the convection. Thus, OMs perceive that the biggest problem with predicting elevated convection is constraining the location of the convective events. The location errors are particularly prevalent for events coming to the UK from the near continent. The location errors are most frequently identified for flow regimes coming from the near continent in weakly forced synoptic conditions. The identification of this problem enables the specific targeting of research into continental plumes (for UK elevated convection) but also raises questions around the role of lateral boundary conditions in the forecasts of elevated convection.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.