{"title":"Finite group with given Hall normally embedded subgroups","authors":"Xuanli He, Qinhui Sun, Jing Wang","doi":"10.1007/s11587-024-00850-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite group. A subgroup <i>H</i> of <i>G</i> is called Hall normally embedded in <i>G</i> if <i>H</i> is a Hall subgroup of the normal closure <span>\\(H^G\\)</span>. In this paper, we fix a subgroup <i>D</i> of Sylow <i>p</i>-subgroup <i>P</i> of <i>G</i> with <span>\\(1<|D|<|O_p(G)|\\)</span> and study the structure of <i>G</i> under the assumption that all subgroups <i>H</i> of <i>P</i> with order <span>\\(|H|=|D|\\)</span> are Hall normally embedded in <i>G</i>.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"66 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00850-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite group. A subgroup H of G is called Hall normally embedded in G if H is a Hall subgroup of the normal closure \(H^G\). In this paper, we fix a subgroup D of Sylow p-subgroup P of G with \(1<|D|<|O_p(G)|\) and study the structure of G under the assumption that all subgroups H of P with order \(|H|=|D|\) are Hall normally embedded in G.
让 G 是一个有限群。如果 G 的一个子群 H 是常闭 \(H^G\) 的一个霍尔子群,那么这个子群就叫做霍尔常嵌于 G。在本文中,我们将 G 的 Sylow p 子群 P 的子群 D 定为 \(1<|D|<|O_p(G)|\),并在假设 P 的所有阶为 \(|H|=|D|\)的子群 H 都是霍尔常嵌于 G 的情况下研究 G 的结构。
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.