N-fold Darboux transformation of the discrete PT-symmetric nonlinear Schrödinger equation and new soliton solutions over the nonzero background

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tao Xu, Li-Cong An, Min Li, Chuan-Xin Xu
{"title":"N-fold Darboux transformation of the discrete PT-symmetric nonlinear Schrödinger equation and new soliton solutions over the nonzero background","authors":"Tao Xu,&nbsp;Li-Cong An,&nbsp;Min Li,&nbsp;Chuan-Xin Xu","doi":"10.1111/sapm.12677","DOIUrl":null,"url":null,"abstract":"<p>For the discrete PT-symmetric nonlinear Schrödinger (dPTNLS) equation, this paper gives a rigorous proof of the N-fold Darboux transformation (DT) and especially verifies the PT-symmetric relation between transformed potentials in the Lax pair. Meanwhile, some determinant identities are developed in completing the proof. When the tanh-function solution is directly selected as a seed for the focusing case, the onefold DT yields a three-soliton solution that exhibits the solitonic behavior with a wide range of parameter regimes. Moreover, it is shown that the solution contains three pairs of asymptotic solitons, and that each asymptotic soliton can display both the dark and antidark soliton profiles or vanish as <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mo>±</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$t \\rightarrow \\pm \\infty$</annotation>\n </semantics></math>. It indicates that the focusing dPTNLS equation admits a rich variety of soliton interactions over the nonzero background, behaving like those in the continuous counterpart.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

For the discrete PT-symmetric nonlinear Schrödinger (dPTNLS) equation, this paper gives a rigorous proof of the N-fold Darboux transformation (DT) and especially verifies the PT-symmetric relation between transformed potentials in the Lax pair. Meanwhile, some determinant identities are developed in completing the proof. When the tanh-function solution is directly selected as a seed for the focusing case, the onefold DT yields a three-soliton solution that exhibits the solitonic behavior with a wide range of parameter regimes. Moreover, it is shown that the solution contains three pairs of asymptotic solitons, and that each asymptotic soliton can display both the dark and antidark soliton profiles or vanish as t ± $t \rightarrow \pm \infty$ . It indicates that the focusing dPTNLS equation admits a rich variety of soliton interactions over the nonzero background, behaving like those in the continuous counterpart.

离散 PT 对称非线性薛定谔方程的 N 折达布变换和非零背景上的新孤子解
对于离散 PT 对称非线性薛定谔方程(dPTNLS),本文给出了 N 折达尔布克斯变换(DT)的严格证明,特别是验证了拉克斯对中变换势之间的 PT 对称关系。同时,在完成证明的过程中还建立了一些行列式等式。当直接选择 tanh 函数解作为聚焦情况下的种子时,一折 DT 得到的三孤子解在广泛的参数范围内表现出孤子行为。此外,研究还表明,该方案包含三对渐近孤子,每个渐近孤子都可以显示暗孤子和反暗孤子的轮廓,或消失为 。这表明在非零背景下,聚焦 dPTNLS 方程允许有丰富多样的孤子相互作用,其行为类似于连续对应方程中的孤子相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信