Spectral and linear stability of peakons in the Novikov equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Stéphane Lafortune
{"title":"Spectral and linear stability of peakons in the Novikov equation","authors":"Stéphane Lafortune","doi":"10.1111/sapm.12679","DOIUrl":null,"url":null,"abstract":"<p>The Novikov equation is a peakon equation with cubic nonlinearity, which, like the Camassa–Holm and the Degasperis–Procesi, is completely integrable. In this paper, we study the spectral and linear stability of peakon solutions of the Novikov equation. We prove spectral instability of the peakons in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(\\mathbb {R})$</annotation>\n </semantics></math>. To do so, we start with a linearized operator defined on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^1(\\mathbb {R})$</annotation>\n </semantics></math> and extend it to a linearized operator defined on weaker functions in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(\\mathbb {R})$</annotation>\n </semantics></math>. The spectrum of the linearized operator in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(\\mathbb {R})$</annotation>\n </semantics></math> is proven to cover a closed vertical strip of the complex plane. Furthermore, we prove that the peakons are spectrally unstable on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{1,\\infty }({\\mathbb {R}})$</annotation>\n </semantics></math> and linearly and spectrally stable on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^1(\\mathbb {R})$</annotation>\n </semantics></math>. The result on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{1,\\infty }({\\mathbb {R}})$</annotation>\n </semantics></math> is in agreement with previous work about linear instability and our result on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^1(\\mathbb {R})$</annotation>\n </semantics></math> is in line with past work on orbital stability.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12679","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Novikov equation is a peakon equation with cubic nonlinearity, which, like the Camassa–Holm and the Degasperis–Procesi, is completely integrable. In this paper, we study the spectral and linear stability of peakon solutions of the Novikov equation. We prove spectral instability of the peakons in L 2 ( R ) $L^2(\mathbb {R})$ . To do so, we start with a linearized operator defined on H 1 ( R ) $H^1(\mathbb {R})$ and extend it to a linearized operator defined on weaker functions in L 2 ( R ) $L^2(\mathbb {R})$ . The spectrum of the linearized operator in L 2 ( R ) $L^2(\mathbb {R})$ is proven to cover a closed vertical strip of the complex plane. Furthermore, we prove that the peakons are spectrally unstable on W 1 , ( R ) $W^{1,\infty }({\mathbb {R}})$ and linearly and spectrally stable on H 1 ( R ) $H^1(\mathbb {R})$ . The result on W 1 , ( R ) $W^{1,\infty }({\mathbb {R}})$ is in agreement with previous work about linear instability and our result on H 1 ( R ) $H^1(\mathbb {R})$ is in line with past work on orbital stability.

诺维科夫方程中峰子的频谱和线性稳定性
诺维科夫方程是一个具有立方非线性的峰值方程,它与卡马萨-霍尔姆方程和德加斯佩里斯-普罗切斯方程一样,是完全可积分的。本文研究了 Novikov 方程峰值解的谱稳定性和线性稳定性。我们证明了......中峰子的谱不稳定性。为此,我们从定义在 上的线性化算子开始,将其扩展为定义在 .中的弱函数上的线性化算子。证明了线性化算子 in 的谱覆盖了复平面的一个封闭垂直条带。此外,我们还证明了峰子在 .上具有谱不稳定性,在 .上具有线性和谱稳定性。上的结果与之前关于线性不稳定性的研究一致,而我们在 上的结果与过去关于轨道稳定性的研究一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信