Mohammed Afzal Rafiq, I. R. Praveen Krishna, C. O. Arun
{"title":"A Boundary Node Method for Solving Interior and Exterior Acoustic Problems","authors":"Mohammed Afzal Rafiq, I. R. Praveen Krishna, C. O. Arun","doi":"10.1142/s021987622350041x","DOIUrl":null,"url":null,"abstract":"<p>The Boundary Node Method (BNM) is a meshfree scheme for solving Boundary Integral Equations (BIE). BNM simplifies the problem at two levels. Primarily, as BNM aims to solve the integral form of the governing equation, is reduced dimensionality of the problem by one order. Additionally, the mesh-free scheme eliminates the need for meshing, proving particularly beneficial for problems involving complex geometries. In this study, BNM is formulated using Element Free Galerkin (EFG) scheme to solve interior and exterior problems in acoustics. A 3-dimensional linear basis is used to construct moving least square shape functions. This eliminates the need to define additional local or parametric coordinate systems, making the method easily applicable to any arbitrary geometry. To illustrate the capabilities of the proposed method, four example problems are solved. An open pipe at resonance and a simple expansion muffler are analyzed to validate BNM’s performance in solving interior problems. Radiation from a pulsating sphere and radiation from a sphere with harmonic velocity excitation are analyzed as examples of exterior problems. Results from all four sample problems indicate that the BNM scheme proposed for solving acoustic problems is accurate and robust.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s021987622350041x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Boundary Node Method (BNM) is a meshfree scheme for solving Boundary Integral Equations (BIE). BNM simplifies the problem at two levels. Primarily, as BNM aims to solve the integral form of the governing equation, is reduced dimensionality of the problem by one order. Additionally, the mesh-free scheme eliminates the need for meshing, proving particularly beneficial for problems involving complex geometries. In this study, BNM is formulated using Element Free Galerkin (EFG) scheme to solve interior and exterior problems in acoustics. A 3-dimensional linear basis is used to construct moving least square shape functions. This eliminates the need to define additional local or parametric coordinate systems, making the method easily applicable to any arbitrary geometry. To illustrate the capabilities of the proposed method, four example problems are solved. An open pipe at resonance and a simple expansion muffler are analyzed to validate BNM’s performance in solving interior problems. Radiation from a pulsating sphere and radiation from a sphere with harmonic velocity excitation are analyzed as examples of exterior problems. Results from all four sample problems indicate that the BNM scheme proposed for solving acoustic problems is accurate and robust.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.