Sunkil Yun, Shashank Alai, Yongdae Kim, Tae Kook Kim, Jaehun Jo, Dahyeon Lee, Lokesh Gorantla, Michael Baloh
{"title":"Applying a System of Systems Perspective to Hyundai-Kia's Virtual Tire Development","authors":"Sunkil Yun, Shashank Alai, Yongdae Kim, Tae Kook Kim, Jaehun Jo, Dahyeon Lee, Lokesh Gorantla, Michael Baloh","doi":"10.1002/inst.12476","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Systems engineering has become important in almost every complex product manufacturing industry, especially automotive. Emerging trends like vehicle electrification and autonomous driving now pose a system of systems (SoS) engineering challenge to automotive OEMs. This paper presents a proof-of-concept (PoC) that applies a top-down SoS perspective to Hyundai-Kia Motor Corporation's (HKMC) virtual product development process to develop a performance-critical component of the vehicle, the tire. The PoC demonstrates using the Arcadia MBSE method to develop a consistent, layered, vehicle architecture model starting from the SoS operational context down to the lowest level of system decomposition in the physical architecture thereby capturing top-down knowledge traceability Using the concept of functional chains, several vehicle performance views are captured that serve as the basis for architecture verification orchestration across engineering domains using a cross-domain orchestration platform thereby validating key vehicle/tire performance metrics that influence the tire design parameters. Preliminary results of the study show that applying a method-based modeling approach could provide several benefits to HKMC's current product development approach such as reduced time to model, SoS knowledge capture and reusability, parameter/requirement traceability, early performance verification, and effective systems engineering collaboration between the OEM, tire design supplier, and tire manufacturers.</p>\n </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"27 1","pages":"61-74"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inst.12476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Systems engineering has become important in almost every complex product manufacturing industry, especially automotive. Emerging trends like vehicle electrification and autonomous driving now pose a system of systems (SoS) engineering challenge to automotive OEMs. This paper presents a proof-of-concept (PoC) that applies a top-down SoS perspective to Hyundai-Kia Motor Corporation's (HKMC) virtual product development process to develop a performance-critical component of the vehicle, the tire. The PoC demonstrates using the Arcadia MBSE method to develop a consistent, layered, vehicle architecture model starting from the SoS operational context down to the lowest level of system decomposition in the physical architecture thereby capturing top-down knowledge traceability Using the concept of functional chains, several vehicle performance views are captured that serve as the basis for architecture verification orchestration across engineering domains using a cross-domain orchestration platform thereby validating key vehicle/tire performance metrics that influence the tire design parameters. Preliminary results of the study show that applying a method-based modeling approach could provide several benefits to HKMC's current product development approach such as reduced time to model, SoS knowledge capture and reusability, parameter/requirement traceability, early performance verification, and effective systems engineering collaboration between the OEM, tire design supplier, and tire manufacturers.
期刊介绍:
Official Journal of The British Institute of Non-Destructive Testing - includes original research and devlopment papers, technical and scientific reviews and case studies in the fields of NDT and CM.