{"title":"Improving performance of cathode NMC-811 by CeO2-coating for Li-ion battery","authors":"Muhammad Fakhrudin , Evvy Kartini , Anne Zulfia","doi":"10.1016/j.mee.2024.112169","DOIUrl":null,"url":null,"abstract":"<div><p>The high energy density layered oxide LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) holds great promise as a cathode material for future Li-ion batteries. However, its application in electric vehicles is hindered by issues such as inadequate cycle performance and rate capability. Additionally, the corrosion caused by the electrolyte poses limitations on high voltage operation. In this study, Cerium Oxide (CeO<sub>2</sub>) was used to coat NMC811 using wet chemical method followed by heat treatment. Distilled water was used to dissolve Ce salt instead of ethanol so that it can reduce coating costs and is more environmentally friendly. XRD analysis showed no significant change in the hexagonal crystal structure of NMC811 material but the appearance of small CeO<sub>2</sub> peaks in patterns. Electrochemical test of CeO<sub>2</sub> coated NMC811 exhibited 18% and 9% higher cyclic and rate performance, respectively in comparison to pristine material.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"288 ","pages":"Article 112169"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000388","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The high energy density layered oxide LiNi0.8Mn0.1Co0.1O2 (NMC811) holds great promise as a cathode material for future Li-ion batteries. However, its application in electric vehicles is hindered by issues such as inadequate cycle performance and rate capability. Additionally, the corrosion caused by the electrolyte poses limitations on high voltage operation. In this study, Cerium Oxide (CeO2) was used to coat NMC811 using wet chemical method followed by heat treatment. Distilled water was used to dissolve Ce salt instead of ethanol so that it can reduce coating costs and is more environmentally friendly. XRD analysis showed no significant change in the hexagonal crystal structure of NMC811 material but the appearance of small CeO2 peaks in patterns. Electrochemical test of CeO2 coated NMC811 exhibited 18% and 9% higher cyclic and rate performance, respectively in comparison to pristine material.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.