Diagonal hypersurfaces and elliptic curves over finite fields and hypergeometric functions

IF 1.2 3区 数学 Q1 MATHEMATICS
Sulakashna , Rupam Barman
{"title":"Diagonal hypersurfaces and elliptic curves over finite fields and hypergeometric functions","authors":"Sulakashna ,&nbsp;Rupam Barman","doi":"10.1016/j.ffa.2024.102397","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span> denote the family of diagonal hypersurface over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> given by<span><span><span><math><mrow><msubsup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></msubsup><mo>:</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>=</mo><mi>λ</mi><mi>d</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi><mo>−</mo><mi>k</mi></mrow></msubsup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>d</mi><mo>−</mo><mn>1</mn></math></span>, and <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>d</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Let <span><math><mi>#</mi><msubsup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span> denote the number of points on <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span> in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>. It is easy to see that <span><math><mi>#</mi><msubsup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span> is equal to the number of distinct zeros of the polynomial <span><math><msup><mrow><mi>y</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>−</mo><mi>d</mi><mi>λ</mi><msup><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><mn>1</mn><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>y</mi><mo>]</mo></math></span> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this article, we prove that <span><math><mi>#</mi><msubsup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span> is also equal to the number of distinct zeros of the polynomial <span><math><msup><mrow><mi>y</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>k</mi></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>y</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><msup><mrow><mo>(</mo><mi>d</mi><mi>λ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup></math></span> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We express the number of distinct zeros of the polynomial <span><math><msup><mrow><mi>y</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>k</mi></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>y</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><msup><mrow><mo>(</mo><mi>d</mi><mi>λ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup></math></span> in terms of a <em>p</em>-adic hypergeometric function. Next, we derive summation identities for the <em>p</em>-adic hypergeometric functions appearing in the expressions for <span><math><mi>#</mi><msubsup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span>. Finally, as an application of the summation identities, we prove identities for the trace of Frobenius endomorphism on certain families of elliptic curves.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000364","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Dλd,k denote the family of diagonal hypersurface over a finite field Fq given byDλd,k:X1d+X2d=λdX1kx2dk, where d2, 1kd1, and gcd(d,k)=1. Let #Dλd,k denote the number of points on Dλd,k in P1(Fq). It is easy to see that #Dλd,k is equal to the number of distinct zeros of the polynomial yddλyk+1Fq[y] in Fq. In this article, we prove that #Dλd,k is also equal to the number of distinct zeros of the polynomial ydk(1y)k(dλ)d in Fq. We express the number of distinct zeros of the polynomial ydk(1y)k(dλ)d in terms of a p-adic hypergeometric function. Next, we derive summation identities for the p-adic hypergeometric functions appearing in the expressions for #Dλd,k. Finally, as an application of the summation identities, we prove identities for the trace of Frobenius endomorphism on certain families of elliptic curves.

有限域上的对角超曲面和椭圆曲线以及超几何函数
让 Dλd,k 表示有限域 Fq 上的对角超曲面族,由 Dλd,k:X1d+X2d=λdX1kx2d-k 给出,其中 d≥2,1≤k≤d-1,且 gcd(d,k)=1.让 #Dλd,k 表示 P1(Fq) 中 Dλd,k 上的点数。不难看出,#Dλd,k 等于多项式 yd-dλyk+1∈Fq[y] 在 Fq 中的独立零点个数。在本文中,我们将证明 #Dλd,k 也等于多项式 yd-k(1-y)k-(dλ)-d 在 Fq 中的独立零点个数。我们用 p-adic 双曲函数来表示多项式 yd-k(1-y)k-(dλ)-d 的独立零点个数。接下来,我们推导出 #Dλd,k 表达式中出现的 p-adic 超几何函数的求和等式。最后,作为求和等式的应用,我们证明了某些椭圆曲线族上弗罗贝尼斯内态势迹的等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信