{"title":"Vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg equations with slip boundary condition","authors":"Pingping Wang , Zhipeng Zhang","doi":"10.1016/j.na.2024.113526","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg (NSK) equations in a three-dimensional horizontally periodic strip domain, in which the velocity of the fluid is supplemented with slip boundary condition and the gradient of density with Dirichlet boundary condition on the boundary. We prove that there exists an positive constant <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> independent on the capillarity and viscosity coefficients, such that the incompressible NSK equations have a unique strong solution on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></mrow></math></span> and the solution is uniformly bounded in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Based on the uniform estimates, we further give the convergence rate in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> from the solutions of the incompressible NSK equations to the solution of the inhomogeneous incompressible Euler equations as the capillarity and viscosity coefficients go to zero simultaneously.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000452","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg (NSK) equations in a three-dimensional horizontally periodic strip domain, in which the velocity of the fluid is supplemented with slip boundary condition and the gradient of density with Dirichlet boundary condition on the boundary. We prove that there exists an positive constant independent on the capillarity and viscosity coefficients, such that the incompressible NSK equations have a unique strong solution on and the solution is uniformly bounded in . Based on the uniform estimates, we further give the convergence rate in from the solutions of the incompressible NSK equations to the solution of the inhomogeneous incompressible Euler equations as the capillarity and viscosity coefficients go to zero simultaneously.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.