O. Yu. Goncharova, M. V. Timofeeva, G. V. Matyshak, A. V. Isaeva
{"title":"Carbon Dioxide in Soil and Surface Waters in the North of Western Siberia: Methodological Approach and Quantitative Characteristics","authors":"O. Yu. Goncharova, M. V. Timofeeva, G. V. Matyshak, A. V. Isaeva","doi":"10.1134/s1064229323602755","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Dissolved inorganic carbon is an essential component of the carbon cycle, especially in the northern regions; however, its loss through water bodies is still rarely included in regional carbon models. The tasks of the work comprise a detailed coverage of the methodological approach of “headspace equilibration” for assessing the concentration of dissolved CO<sub>2</sub> in soil and surface waters and estimation of the CO<sub>2</sub> concentration range in waters of different geneses in the landscapes of northern Western Siberia. The performed methodological work has allowed a headspace equilibration protocol for measuring the CO<sub>2</sub> concentration in waters to be elaborated and described with detailed calculations. The CO<sub>2</sub> concentration in soil (suprapermafrost) and surface waters (river, bog, lake, etc.) ranges from 13 to 2983 µmol/L (274 to 57 000 µatm), and the vast majority of objects are supersaturated with CO<sub>2</sub> relative to the atmosphere. The maximum concentrations are characteristic of suprapermafrost soil and bog waters, and the minimum concentrations are in the waters of aquatic ecosystems (thermokarst and forest lakes). A high variability of CO<sub>2</sub> concentrations in waters necessitates a large number of measurements to provide adequate estimates.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"65 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1134/s1064229323602755","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved inorganic carbon is an essential component of the carbon cycle, especially in the northern regions; however, its loss through water bodies is still rarely included in regional carbon models. The tasks of the work comprise a detailed coverage of the methodological approach of “headspace equilibration” for assessing the concentration of dissolved CO2 in soil and surface waters and estimation of the CO2 concentration range in waters of different geneses in the landscapes of northern Western Siberia. The performed methodological work has allowed a headspace equilibration protocol for measuring the CO2 concentration in waters to be elaborated and described with detailed calculations. The CO2 concentration in soil (suprapermafrost) and surface waters (river, bog, lake, etc.) ranges from 13 to 2983 µmol/L (274 to 57 000 µatm), and the vast majority of objects are supersaturated with CO2 relative to the atmosphere. The maximum concentrations are characteristic of suprapermafrost soil and bog waters, and the minimum concentrations are in the waters of aquatic ecosystems (thermokarst and forest lakes). A high variability of CO2 concentrations in waters necessitates a large number of measurements to provide adequate estimates.
期刊介绍:
Eurasian Soil Science publishes original research papers on global and regional studies discussing both theoretical and experimental problems of genesis, geography, physics, chemistry, biology, fertility, management, conservation, and remediation of soils. Special sections are devoted to current news in the life of the International and Russian soil science societies and to the history of soil sciences.
Since 2000, the journal Agricultural Chemistry, the English version of the journal of the Russian Academy of Sciences Agrokhimiya, has been merged into the journal Eurasian Soil Science and is no longer published as a separate title.