Amelie Klein, David E. Jessop, Franck Donnadieu, Joanny Pierre, Roberto Moretti
{"title":"Dome permeability and fluid circulation at La Soufrière de Guadeloupe implied from soil CO $$_2$$ degassing, thermal flux and self-potential","authors":"Amelie Klein, David E. Jessop, Franck Donnadieu, Joanny Pierre, Roberto Moretti","doi":"10.1007/s00445-024-01713-z","DOIUrl":null,"url":null,"abstract":"<p>Quantifying subsurface fluid flows and related heat and gas fluxes can provide essential clues for interpreting the evolution of volcanic unrest in volcanoes with active hydrothermal systems. To better constrain the distribution of current hydrothermal activity, we mapped diffuse soil CO<span>\\(_2\\)</span> degassing, ground temperature and self-potential covering the summit of La Soufrière de Guadeloupe during 2022–2023. We identify areas of fluid recharge and the zones and extent of major ascending hydrothermal flows. This paper provides a first estimate for summit ground CO<span>\\(_2\\)</span> flux of 4.20±0.86 t<span>\\(\\text {d}^{-1}\\)</span>, representing about half the CO<span>\\(_2\\)</span> emissions from the summit fumaroles. We find an extensive area of ground heating of at least 22250±6900 m<span>\\(^{2}\\)</span> in size and calculate a total ground heat flux of 2.93±0.78 MW, dominated by a convective flux of 2.25±0.46 MW. The prominent summit fractures exert significant control over hydrothermal fluid circulation and delimit a main active zone in the NE sector. The observed shift in subsurface fluid circulation towards this sector may be attributed to a changing ground permeability and may also be related to observed fault widening and the gravitational sliding of the dome’s SW flank. Our results indicate that the state of sealing of the dome may be inferred from the mapping of hydrothermal fluid fluxes, which may help evaluate potential hazards associated with fluid pressurisation.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"63 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01713-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying subsurface fluid flows and related heat and gas fluxes can provide essential clues for interpreting the evolution of volcanic unrest in volcanoes with active hydrothermal systems. To better constrain the distribution of current hydrothermal activity, we mapped diffuse soil CO\(_2\) degassing, ground temperature and self-potential covering the summit of La Soufrière de Guadeloupe during 2022–2023. We identify areas of fluid recharge and the zones and extent of major ascending hydrothermal flows. This paper provides a first estimate for summit ground CO\(_2\) flux of 4.20±0.86 t\(\text {d}^{-1}\), representing about half the CO\(_2\) emissions from the summit fumaroles. We find an extensive area of ground heating of at least 22250±6900 m\(^{2}\) in size and calculate a total ground heat flux of 2.93±0.78 MW, dominated by a convective flux of 2.25±0.46 MW. The prominent summit fractures exert significant control over hydrothermal fluid circulation and delimit a main active zone in the NE sector. The observed shift in subsurface fluid circulation towards this sector may be attributed to a changing ground permeability and may also be related to observed fault widening and the gravitational sliding of the dome’s SW flank. Our results indicate that the state of sealing of the dome may be inferred from the mapping of hydrothermal fluid fluxes, which may help evaluate potential hazards associated with fluid pressurisation.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.