Complex Pulse Profile Optimization by Chromatic Dispersion Management in Coupled Opto-Electronic Oscillator Based on Semiconductor Optical Amplifier

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Alexis Bougaud;Arnaud Fernandez;Aliou Ly;Stéphane Balac;Olivier Llopis
{"title":"Complex Pulse Profile Optimization by Chromatic Dispersion Management in Coupled Opto-Electronic Oscillator Based on Semiconductor Optical Amplifier","authors":"Alexis Bougaud;Arnaud Fernandez;Aliou Ly;Stéphane Balac;Olivier Llopis","doi":"10.1109/JQE.2024.3372575","DOIUrl":null,"url":null,"abstract":"An Ikeda map iterative numerical model completed with an analytical Gaussian analysis and experimental measurements of complex pulse profile and phase noise performance at 10 GHz are proposed. This work aims to study and optimize the chromatic dispersion of a fibered mode-locked laser (MLL) based on a semiconductor optical amplifier (SOA) as part of a coupled optoelectronic oscillator (COEO). We will demonstrate that a close to zero anomalous dispersion regime is preferred as it allows the generation of optical picosecond pulses with minimum full width at half maximum (FWHM) and maximizes the absolute value of chirp and peak power. This guarantees the generation of narrow and diffraction-limited optical pulses after the chromatic dispersion compensating stage prior photodetection in order to lower the phase noise of the microwave signal generated at 10 GHz but also for high-order microwave harmonics synthesis.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10458682/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

An Ikeda map iterative numerical model completed with an analytical Gaussian analysis and experimental measurements of complex pulse profile and phase noise performance at 10 GHz are proposed. This work aims to study and optimize the chromatic dispersion of a fibered mode-locked laser (MLL) based on a semiconductor optical amplifier (SOA) as part of a coupled optoelectronic oscillator (COEO). We will demonstrate that a close to zero anomalous dispersion regime is preferred as it allows the generation of optical picosecond pulses with minimum full width at half maximum (FWHM) and maximizes the absolute value of chirp and peak power. This guarantees the generation of narrow and diffraction-limited optical pulses after the chromatic dispersion compensating stage prior photodetection in order to lower the phase noise of the microwave signal generated at 10 GHz but also for high-order microwave harmonics synthesis.
通过基于半导体光放大器的耦合光电振荡器中的色散管理优化复杂脉冲轮廓
本文提出了一个池田图迭代数值模型,并对 10 GHz 的复杂脉冲轮廓和相位噪声性能进行了分析性高斯分析和实验测量。这项工作旨在研究和优化基于半导体光放大器(SOA)的光纤锁模激光器(MLL)的色度色散,作为耦合光电振荡器(COEO)的一部分。我们将证明,接近零的反常色散机制是首选,因为它可以产生半最大全宽(FWHM)最小的皮秒脉冲,并使啁啾绝对值和峰值功率最大化。这就保证了在光电探测之前的色度色散补偿阶段之后产生窄且衍射受限的光脉冲,以降低 10 GHz 频率下产生的微波信号的相位噪声,同时也可用于高阶微波谐波合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信