{"title":"Preparation of hollow carbon nanospheres from oxidation of spent tyre oil-derived carbon black in air","authors":"Chiemeka Onyeka Okoye, Zhezi Zhang, Dongke Zhang","doi":"10.1002/apj.3054","DOIUrl":null,"url":null,"abstract":"<p>Hollow carbon nanospheres (HCNS) were prepared from carbon black (CB) derived from spent tyre pyrolysis oil. The pristine CB produced by partial oxidation of the pyrolysis oil in a drop tube furnace was subsequently oxidised in air in a fixed bed reactor to yield HCNS. The effect of oxidation temperature (300 to 700°C) and time (1 to 8 h) on the burn-off (<b><i>B</i></b><sub><b><i>t</i></b></sub>) of the sample over the duration (<i>t</i>) of oxidation and average reaction rate (<i>R</i><sub><i>t</i></sub>) was assessed. The BET surface area and pore volume and the nanostructure of the HCNS samples obtained were characterised using N<sub>2</sub> adsorption–desorption and high-resolution transmission electron microscope (HRTEM) techniques, respectively. Higher temperature and longer oxidation time led to higher <b><i>B</i></b><sub><b><i>t</i></b></sub>. As <b><i>B</i></b><sub><b><i>t</i></b></sub> increased, the BET surface area and pore volume initially increased linearly due to the removal of the amorphous core and then decreased because of the collapse of the shell of the carbon nanostructure. At <b><i>B</i></b><sub><b><i>t</i></b></sub> of ~56%, the maximum BET surface area and pore volume of the HCNS were 383.2 m<sup>2</sup> g<sup>−1</sup> and 0.39 cm<sup>3</sup> g<sup>−1</sup>, respectively, compared to ~19.5 m<sup>2</sup> g<sup>−1</sup> and 0.033 cm<sup>3</sup> g<sup>−1</sup> of the pristine CB. The HRTEM images indicate that the change in BET surface area corresponds to the formation of the HCNS, as the core of the CB particle was preferentially consumed to create a hollow structure. The formation of HCNS follows an internal oxidation model, which is characterised by rapid core consumption and relatively slow shell consumption.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apj.3054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hollow carbon nanospheres (HCNS) were prepared from carbon black (CB) derived from spent tyre pyrolysis oil. The pristine CB produced by partial oxidation of the pyrolysis oil in a drop tube furnace was subsequently oxidised in air in a fixed bed reactor to yield HCNS. The effect of oxidation temperature (300 to 700°C) and time (1 to 8 h) on the burn-off (Bt) of the sample over the duration (t) of oxidation and average reaction rate (Rt) was assessed. The BET surface area and pore volume and the nanostructure of the HCNS samples obtained were characterised using N2 adsorption–desorption and high-resolution transmission electron microscope (HRTEM) techniques, respectively. Higher temperature and longer oxidation time led to higher Bt. As Bt increased, the BET surface area and pore volume initially increased linearly due to the removal of the amorphous core and then decreased because of the collapse of the shell of the carbon nanostructure. At Bt of ~56%, the maximum BET surface area and pore volume of the HCNS were 383.2 m2 g−1 and 0.39 cm3 g−1, respectively, compared to ~19.5 m2 g−1 and 0.033 cm3 g−1 of the pristine CB. The HRTEM images indicate that the change in BET surface area corresponds to the formation of the HCNS, as the core of the CB particle was preferentially consumed to create a hollow structure. The formation of HCNS follows an internal oxidation model, which is characterised by rapid core consumption and relatively slow shell consumption.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.