{"title":"Internal Model-Based Robust Path-Following Control for Autonomous Vehicles","authors":"Adorján Kovács, István Vajk","doi":"10.1007/s12239-024-00003-z","DOIUrl":null,"url":null,"abstract":"<p>The paper presents a new internal model control (IMC) based control technique for lateral trajectory tracking of autonomous vehicles. The controller’s proposed structure employs a robust, fault-tolerant nonlinear internal servo control with optimal reference generation concerning vehicle yaw stability and physical limitations. The presented inscription of the reference generation creates a convex optimization task that can be used in real-time applications. Improvements in yaw-rate stability of vehicle motion control are first shown through simulation results performed in a Simulink environment. The controller structure was also implemented in a real-time model and was examined in a Mercedes C-Class vehicle. In this article, the simulation results and the real-time measurements are presented. The results show that the proposed controller has high efficiency in disturbance rejection and lower sensitivity towards parameter changes compared to a model predictive control (MPC) structure.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00003-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a new internal model control (IMC) based control technique for lateral trajectory tracking of autonomous vehicles. The controller’s proposed structure employs a robust, fault-tolerant nonlinear internal servo control with optimal reference generation concerning vehicle yaw stability and physical limitations. The presented inscription of the reference generation creates a convex optimization task that can be used in real-time applications. Improvements in yaw-rate stability of vehicle motion control are first shown through simulation results performed in a Simulink environment. The controller structure was also implemented in a real-time model and was examined in a Mercedes C-Class vehicle. In this article, the simulation results and the real-time measurements are presented. The results show that the proposed controller has high efficiency in disturbance rejection and lower sensitivity towards parameter changes compared to a model predictive control (MPC) structure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.