{"title":"LFFNet: lightweight feature-enhanced fusion network for real-time semantic segmentation of road scenes","authors":"Xuegang Hu, Jing Feng, Juelin Gong","doi":"10.1007/s10044-024-01237-4","DOIUrl":null,"url":null,"abstract":"<p>Deep neural networks have significantly improved semantic segmentation, but their great performance frequently comes at the expense of expensive computation and protracted inference times, which fall short of the exacting standards of real-world applications. A lightweight feature-enhanced fusion network (LFFNet) for real-time semantic segmentation is proposed. LFFNet is a particular type of asymmetric encoder–decoder structure. In the encoder, A multi-dilation rate fusion module can guarantee the retention of local information while enlarging the appropriate field in the encoder section, which resolves the issue of insufficient feature extraction caused by the variability of target size. In the decoder, different decoding modules are designed for spatial information and semantic information. The attentional feature enhancement module takes advantage of the attention mechanism to feature-optimize the contextual information of the high-level output, and the lightweight multi-scale feature fusion module fuses the features from various stages to aggregate more spatial detail information and contextual semantic information. The experimental findings demonstrate that LFFNet achieves 72.1% mIoU and 67.0% mIoU on Cityscapes and Camvid datasets at 102 FPS and 244 FPS, respectively, with only 0.63M parameters. Note that there is neither pretraining nor pre-processing. Our model can achieve superior segmentation performance with fewer parameters and less computation compared to existing networks.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"38 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01237-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep neural networks have significantly improved semantic segmentation, but their great performance frequently comes at the expense of expensive computation and protracted inference times, which fall short of the exacting standards of real-world applications. A lightweight feature-enhanced fusion network (LFFNet) for real-time semantic segmentation is proposed. LFFNet is a particular type of asymmetric encoder–decoder structure. In the encoder, A multi-dilation rate fusion module can guarantee the retention of local information while enlarging the appropriate field in the encoder section, which resolves the issue of insufficient feature extraction caused by the variability of target size. In the decoder, different decoding modules are designed for spatial information and semantic information. The attentional feature enhancement module takes advantage of the attention mechanism to feature-optimize the contextual information of the high-level output, and the lightweight multi-scale feature fusion module fuses the features from various stages to aggregate more spatial detail information and contextual semantic information. The experimental findings demonstrate that LFFNet achieves 72.1% mIoU and 67.0% mIoU on Cityscapes and Camvid datasets at 102 FPS and 244 FPS, respectively, with only 0.63M parameters. Note that there is neither pretraining nor pre-processing. Our model can achieve superior segmentation performance with fewer parameters and less computation compared to existing networks.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.