{"title":"Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler \n \n \n SL\n (\n 2\n ,\n R\n )\n ×\n SL\n (\n 2\n ,\n R\n )\n \n $\\mathrm{SL}(2,\\mathbb {R})\\times \\mathrm{SL}(2,\\mathbb {R})$","authors":"Mateo Anarella, J. Van der Veken","doi":"10.1002/mana.202300351","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler <span></span><math>\n <semantics>\n <mrow>\n <mi>SL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n <mo>×</mo>\n <mi>SL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{SL}(2,\\mathbb {R})\\times \\mathrm{SL}(2,\\mathbb {R})$</annotation>\n </semantics></math>. First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler . First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.
在本文中,我们研究了伪近似凯勒的拉格朗日子漫空间(Lagrangian submanifolds of the pseudo-nearly Kähler .首先,我们证明了它们分为四个不同的类别,这取决于它们相对于环境空间上的某种近积结构的行为。然后,我们给出了该空间的完全测地拉格朗日子实体的完整分类。