Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler SL ( 2 , R ) × SL ( 2 , R ) $\mathrm{SL}(2,\mathbb {R})\times \mathrm{SL}(2,\mathbb {R})$

Pub Date : 2024-03-03 DOI:10.1002/mana.202300351
Mateo Anarella, J. Van der Veken
{"title":"Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler \n \n \n SL\n (\n 2\n ,\n R\n )\n ×\n SL\n (\n 2\n ,\n R\n )\n \n $\\mathrm{SL}(2,\\mathbb {R})\\times \\mathrm{SL}(2,\\mathbb {R})$","authors":"Mateo Anarella,&nbsp;J. Van der Veken","doi":"10.1002/mana.202300351","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler <span></span><math>\n <semantics>\n <mrow>\n <mi>SL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n <mo>×</mo>\n <mi>SL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{SL}(2,\\mathbb {R})\\times \\mathrm{SL}(2,\\mathbb {R})$</annotation>\n </semantics></math>. First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler SL ( 2 , R ) × SL ( 2 , R ) $\mathrm{SL}(2,\mathbb {R})\times \mathrm{SL}(2,\mathbb {R})$ . First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.

分享
查看原文
伪近似 Kähler SL(2,R)×SL(2,R)$\mathrm{SL}(2,\mathbb {R})\times \mathrm{SL}(2,\mathbb {R})$ 的完全测地拉格朗日子网格
在本文中,我们研究了伪近似凯勒的拉格朗日子漫空间(Lagrangian submanifolds of the pseudo-nearly Kähler .首先,我们证明了它们分为四个不同的类别,这取决于它们相对于环境空间上的某种近积结构的行为。然后,我们给出了该空间的完全测地拉格朗日子实体的完整分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信