{"title":"Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler \n \n \n SL\n (\n 2\n ,\n R\n )\n ×\n SL\n (\n 2\n ,\n R\n )\n \n $\\mathrm{SL}(2,\\mathbb {R})\\times \\mathrm{SL}(2,\\mathbb {R})$","authors":"Mateo Anarella, J. Van der Veken","doi":"10.1002/mana.202300351","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler <span></span><math>\n <semantics>\n <mrow>\n <mi>SL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n <mo>×</mo>\n <mi>SL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{SL}(2,\\mathbb {R})\\times \\mathrm{SL}(2,\\mathbb {R})$</annotation>\n </semantics></math>. First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 5","pages":"1922-1944"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300351","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler . First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.
在本文中,我们研究了伪近似凯勒的拉格朗日子漫空间(Lagrangian submanifolds of the pseudo-nearly Kähler .首先,我们证明了它们分为四个不同的类别,这取决于它们相对于环境空间上的某种近积结构的行为。然后,我们给出了该空间的完全测地拉格朗日子实体的完整分类。
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index