Orientations of graphs with maximum Wiener index

IF 0.9 3区 数学 Q2 MATHEMATICS
Zhenzhen Li, Baoyindureng Wu
{"title":"Orientations of graphs with maximum Wiener index","authors":"Zhenzhen Li,&nbsp;Baoyindureng Wu","doi":"10.1002/jgt.23090","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the Wiener index of the orientation of trees and theta-graphs. An orientation of a tree is called no-zig-zag if there is no subpath in which edges change the orientation twice. Knor, Škrekovski, and Tepeh conjectured that every orientation of a tree <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> achieving the maximum Wiener index is no-zig-zag. We disprove this conjecture by constructing a counterexample. Knor, Škrekovski, and Tepeh conjectured that among all orientations of the theta-graph <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Θ</mi>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>,</mo>\n \n <mi>c</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${{\\rm{\\Theta }}}_{a,b,c}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n \n <mo>≥</mo>\n \n <mi>b</mi>\n \n <mo>≥</mo>\n \n <mi>c</mi>\n </mrow>\n <annotation> $a\\ge b\\ge c$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n \n <mo>&gt;</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $b\\gt 1$</annotation>\n </semantics></math>, the maximum Wiener index is achieved by the one in which the union of the paths between <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${u}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${u}_{2}$</annotation>\n </semantics></math> forms a directed cycle of length <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n \n <mo>+</mo>\n \n <mi>b</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $a+b+2$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${u}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${u}_{2}$</annotation>\n </semantics></math> are the vertex of degree 3. We confirm the validity of the conjecture.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 3","pages":"556-580"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23090","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Wiener index of the orientation of trees and theta-graphs. An orientation of a tree is called no-zig-zag if there is no subpath in which edges change the orientation twice. Knor, Škrekovski, and Tepeh conjectured that every orientation of a tree T $T$ achieving the maximum Wiener index is no-zig-zag. We disprove this conjecture by constructing a counterexample. Knor, Škrekovski, and Tepeh conjectured that among all orientations of the theta-graph Θ a , b , c ${{\rm{\Theta }}}_{a,b,c}$ with a b c $a\ge b\ge c$ and b > 1 $b\gt 1$ , the maximum Wiener index is achieved by the one in which the union of the paths between u 1 ${u}_{1}$ and u 2 ${u}_{2}$ forms a directed cycle of length a + b + 2 $a+b+2$ , where u 1 ${u}_{1}$ and u 2 ${u}_{2}$ are the vertex of degree 3. We confirm the validity of the conjecture.

具有最大维纳指数的图形方向
本文研究了树和θ图的方向的维纳指数。如果树的一个方向上不存在边改变方向两次的子路径,则称为无之字形方向。Knor、Škrekovski 和 Tepeh 猜想,达到最大维纳指数的树的每个方向都是无之字形。我们通过构建一个反例推翻了这一猜想。Knor、Škrekovski 和 Tepeh 猜想,在有 和 的θ图的所有方向中,达到最大维纳指数的方向是和 之间的路径联合形成长度为 和 的有向循环的方向,其中 和 是阶数为 3 的顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信