{"title":"Effect of Concomitant Drugs on Sodium Zirconium Cyclosilicate Hydrate in Artificial Intestinal Juice","authors":"Yuri Mizuno, Fumihiko Ogata, Yugo Uematsu, Naohito Kawasaki","doi":"10.1248/cpb.c23-00687","DOIUrl":null,"url":null,"abstract":"</p><p>To explore drug interactions involving sodium zirconium cyclosilicate hydrate (SZC) and concomitant drugs like calcium antagonists (amlodipine and nifedipine) and β-blockers (carvedilol and bisoprolol), we investigate how these concomitant drugs influenced the administration of SZC in an artificial intestinal juice. Initially, we assessed the potassium ion adsorption capacity, ranking it as follows: calcium polystyrene sulfonate (CPS, 54.9 mg/g) < sodium polystyrene sulfonate (SPS, 62.1 mg/g) < SZC (90.8 mg/g). However, the adsorption equilibrium was achieved in the order of CPS ≒ SPS (within 1 min) < SZC (within 1 h). Subsequently, we determined the residual percentages of amlodipine, nifedipine, carvedilol, and bisoprolol, finding them to be 79.0–91.9% for SZC, 0.38–38.4% for SPS, and 0.57–29.0% for CPS. These results suggest the efficacy of SZC in managing hyperkalemia alongside concomitant drugs in an artificial intestinal juice, with particular emphasis on amlodipine (calcium antagonist) and carvedilol (β-blocker). Additionally, we identified the presence of carbon, nitrogen, and oxygen components from both drugs on the SZC surface following interaction. We also evaluated how amlodipine, nifedipine, carvedilol, and bisoprolol affected the administration of SZC in the presence of potassium ions. Our results indicate that potassium ions and concomitant drugs did not interfere with each other in the artificial intestinal juice. These results offer valuable insights into the administration of SZC in conjunction with concomitant drugs. Lastly, the presented data shows qualitative results in this study.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/cpb/72/3/72_c23-00687/figure/72_c23-00687.png\"/>\n<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"123 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c23-00687","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
To explore drug interactions involving sodium zirconium cyclosilicate hydrate (SZC) and concomitant drugs like calcium antagonists (amlodipine and nifedipine) and β-blockers (carvedilol and bisoprolol), we investigate how these concomitant drugs influenced the administration of SZC in an artificial intestinal juice. Initially, we assessed the potassium ion adsorption capacity, ranking it as follows: calcium polystyrene sulfonate (CPS, 54.9 mg/g) < sodium polystyrene sulfonate (SPS, 62.1 mg/g) < SZC (90.8 mg/g). However, the adsorption equilibrium was achieved in the order of CPS ≒ SPS (within 1 min) < SZC (within 1 h). Subsequently, we determined the residual percentages of amlodipine, nifedipine, carvedilol, and bisoprolol, finding them to be 79.0–91.9% for SZC, 0.38–38.4% for SPS, and 0.57–29.0% for CPS. These results suggest the efficacy of SZC in managing hyperkalemia alongside concomitant drugs in an artificial intestinal juice, with particular emphasis on amlodipine (calcium antagonist) and carvedilol (β-blocker). Additionally, we identified the presence of carbon, nitrogen, and oxygen components from both drugs on the SZC surface following interaction. We also evaluated how amlodipine, nifedipine, carvedilol, and bisoprolol affected the administration of SZC in the presence of potassium ions. Our results indicate that potassium ions and concomitant drugs did not interfere with each other in the artificial intestinal juice. These results offer valuable insights into the administration of SZC in conjunction with concomitant drugs. Lastly, the presented data shows qualitative results in this study.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.