Nehari manifold approach for fractional Kirchhoff problems with extremal value of the parameter

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Nehari manifold approach for fractional Kirchhoff problems with extremal value of the parameter","authors":"","doi":"10.1007/s13540-024-00261-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this work we study the following nonlocal problem <span> <span>$$\\begin{aligned} \\left\\{ \\begin{aligned} M(\\Vert u\\Vert ^2_X)(-\\varDelta )^s u&amp;= \\lambda {f(x)}|u|^{\\gamma -2}u+{g(x)}|u|^{p-2}u{} &amp; {} \\text{ in }\\ \\ \\varOmega , \\\\ u&amp;=0{} &amp; {} \\text{ on }\\ \\ \\mathbb R^N\\setminus \\varOmega , \\end{aligned} \\right. \\end{aligned}$$</span> </span>where <span> <span>\\(\\varOmega \\subset \\mathbb R^N\\)</span> </span> is open and bounded with smooth boundary, <span> <span>\\(N&gt;2s, s\\in (0, 1), M(t)=a+bt^{\\theta -1},\\;t\\ge 0\\)</span> </span> with <span> <span>\\( \\theta &gt;1, a\\ge 0\\)</span> </span> and <span> <span>\\(b&gt;0\\)</span> </span>. The exponents satisfy <span> <span>\\(1&lt;\\gamma&lt;2&lt;{2\\theta&lt;p&lt;2^*_{s}=2N/(N-2s)}\\)</span> </span> (when <span> <span>\\(a\\ne 0\\)</span> </span>) and <span> <span>\\(2&lt;\\gamma&lt;2\\theta&lt;p&lt;2^*_{s}\\)</span> </span> (when <span> <span>\\(a=0\\)</span> </span>). The parameter <span> <span>\\(\\lambda \\)</span> </span> involved in the problem is real and positive. The problem under consideration has nonlocal behaviour due to the presence of nonlocal fractional Laplacian operator as well as the nonlocal Kirchhoff term <span> <span>\\(M(\\Vert u\\Vert ^2_X)\\)</span> </span>, where <span> <span>\\(\\Vert u\\Vert ^{2}_{X}=\\iint _{\\mathbb R^{2N}} \\frac{|u(x)-u(y)|^2}{\\left| x-y\\right| ^{N+2s}}dxdy\\)</span> </span>. The weight functions <span> <span>\\(f, g:\\varOmega \\rightarrow \\mathbb R\\)</span> </span> are continuous, <em>f</em> is positive while <em>g</em> is allowed to change sign. In this paper an extremal value of the parameter, a threshold to apply Nehari manifold method, is characterized variationally for both degenerate and non-degenerate Kirchhoff cases to show an existence of at least two positive solutions even when <span> <span>\\(\\lambda \\)</span> </span> crosses the extremal parameter value by executing fine analysis based on fibering maps and Nehari manifold.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00261-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study the following nonlocal problem $$\begin{aligned} \left\{ \begin{aligned} M(\Vert u\Vert ^2_X)(-\varDelta )^s u&= \lambda {f(x)}|u|^{\gamma -2}u+{g(x)}|u|^{p-2}u{} & {} \text{ in }\ \ \varOmega , \\ u&=0{} & {} \text{ on }\ \ \mathbb R^N\setminus \varOmega , \end{aligned} \right. \end{aligned}$$ where \(\varOmega \subset \mathbb R^N\) is open and bounded with smooth boundary, \(N>2s, s\in (0, 1), M(t)=a+bt^{\theta -1},\;t\ge 0\) with \( \theta >1, a\ge 0\) and \(b>0\) . The exponents satisfy \(1<\gamma<2<{2\theta<p<2^*_{s}=2N/(N-2s)}\) (when \(a\ne 0\) ) and \(2<\gamma<2\theta<p<2^*_{s}\) (when \(a=0\) ). The parameter \(\lambda \) involved in the problem is real and positive. The problem under consideration has nonlocal behaviour due to the presence of nonlocal fractional Laplacian operator as well as the nonlocal Kirchhoff term \(M(\Vert u\Vert ^2_X)\) , where \(\Vert u\Vert ^{2}_{X}=\iint _{\mathbb R^{2N}} \frac{|u(x)-u(y)|^2}{\left| x-y\right| ^{N+2s}}dxdy\) . The weight functions \(f, g:\varOmega \rightarrow \mathbb R\) are continuous, f is positive while g is allowed to change sign. In this paper an extremal value of the parameter, a threshold to apply Nehari manifold method, is characterized variationally for both degenerate and non-degenerate Kirchhoff cases to show an existence of at least two positive solutions even when \(\lambda \) crosses the extremal parameter value by executing fine analysis based on fibering maps and Nehari manifold.

有参数极值的分数基尔霍夫问题的内哈里流形方法
摘要 在这项工作中,我们研究了以下非局部问题 $$\begin{aligned}\left\{(开始{对齐}M(\Vert u\Vert ^2_X)(-\varDelta )^s u&= \lambda {f(x)}|u|^{\gamma -2}u+{g(x)}|u|^{p-2}u{}&{}。\text{ in }\ \varOmega , \ u&=0{} & {}\text{ on }\mathbb R^N\setminus \varOmega , \end{aligned}.\right。\end{aligned}$$ 其中 \(\varOmega \subset \mathbb R^N\) 是开放的、有光滑边界的, \(N>2s, s\in (0, 1), M(t)=a+bt^{\theta -1},\;t\ge 0\) with \( \theta >1, a\ge 0\) and\(b>0\) .指数满足(1<gamma<2<{2\theta<p<2^*_{s}=2N/(N-2s)})(当(a\ne 0\)时)和(2<gamma<2\theta<p<2^*_{s})(当(a=0\)时)。问题中涉及的参数 \(\lambda \)是实数和正数。由于非局部分数拉普拉斯算子以及非局部基尔霍夫项 \(M(\Vert u\Vert ^2_X)\) 的存在,所考虑的问题具有非局部性。其中 \(\Vert u\Vert ^{2}_{X}=\iint _{\mathbb R^{2N}}\frac{|u(x)-u(y)|^2}{left|x-y\right|^{N+2s}}dxdy\)。权重函数 \(f, g:\varOmega \rightarrow \mathbb R\) 是连续的,f 是正的,而 g 允许改变符号。本文通过基于纤化映射和 Nehari 流形的精细分析,对基尔霍夫退化和非退化情况下的参数极值(应用 Nehari 流形方法的临界值)进行了变化描述,以表明即使 \(\lambda \) 越过参数极值,也至少存在两个正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信