Hongjuan Liu, Tianyu Fu, Ziying Cao and Yuanbing Mao
{"title":"Eco-friendly hydroxyapatite and emerging MXenes for uranium adsorptive uptake","authors":"Hongjuan Liu, Tianyu Fu, Ziying Cao and Yuanbing Mao","doi":"10.1039/D3EN00849E","DOIUrl":null,"url":null,"abstract":"<p >Uranium is a nuclear contaminant possessing radioactivity and chemical toxicity. It can be discharged into the environment from multiple sources such as uranium ore mining and hydrometallurgy, used nuclear fuel disposal and nuclear accidents. Uranium could be a growing threat to human survival and biodiversity if it is released into the environment without treatment. As one of the treatment technologies, uranium adsorption, therefore, has become an important research area. The traditional eco-friendly hydroxyapatite (HAP) and emerging MXenes have been proved to serve as potentially ideal adsorbents for uranium while there is no review about their uranium adsorption. In this paper, the recent research status of HAP and MXenes as uranium adsorbents is overviewed. The uranium adsorption capacity, adsorption influencing factors, and interaction mechanisms of these two types of materials are discussed. In addition, MXenes are a new class of two-dimensional materials, and their synthesis methods are constantly updated. Thus, the latest progress of the preparation methods of MXenes is reviewed in detail. Furthermore, we have pointed out some challenges in their use for uranium adsorption and suggested possible future research directions.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 7","pages":" 2744-2770"},"PeriodicalIF":5.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d3en00849e","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Uranium is a nuclear contaminant possessing radioactivity and chemical toxicity. It can be discharged into the environment from multiple sources such as uranium ore mining and hydrometallurgy, used nuclear fuel disposal and nuclear accidents. Uranium could be a growing threat to human survival and biodiversity if it is released into the environment without treatment. As one of the treatment technologies, uranium adsorption, therefore, has become an important research area. The traditional eco-friendly hydroxyapatite (HAP) and emerging MXenes have been proved to serve as potentially ideal adsorbents for uranium while there is no review about their uranium adsorption. In this paper, the recent research status of HAP and MXenes as uranium adsorbents is overviewed. The uranium adsorption capacity, adsorption influencing factors, and interaction mechanisms of these two types of materials are discussed. In addition, MXenes are a new class of two-dimensional materials, and their synthesis methods are constantly updated. Thus, the latest progress of the preparation methods of MXenes is reviewed in detail. Furthermore, we have pointed out some challenges in their use for uranium adsorption and suggested possible future research directions.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis